Skip to main content
Log in

Solid emulsion gel as a novel construct for topical applications: synthesis, morphology and mechanical properties

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A series of the solid emulsion gels with the oil volume fraction in the range of 0–50% were synthesized through a polycondensation reaction between activated p-nitrophenyl carbonate poly(ethylene glycol) and protein-stabilized oil-in-water emulsions. The resultant structures were investigated in terms of swelling behavior, composition, morphology, mechanical and skin hydration properties. Solid emulsions gels share the properties of both hydrogel and emulsion. Similar to the classical hydrogel, the SEG swells in water up to equilibrium swelling degree, which decreases as the oil volume fraction increases, and comprises immobilized drops of protein-stabilized oil. The impregnation of the oil phase is found to reduce tensile stiffness of the material, but improves material’s extensibility. The mechanical properties of the constructs (Young moduli in the range of 9–15 kPa and the elongation at break of 120–220%) are interpreted according to the “rule of elasticity mixture” that considers the elasticity of the composite material to be a sum of the contributions from individual components, i.e. hydrogel and dispersed oil drops. An idealized model that takes into account the history of the material preparation has been proposed to explain the improved extensibility of the constructs. The results of the mechanical tests, equilibrium swelling, and the skin hydration effect of the solid emulsion gels in vivo are discussed from the perspective of the biomedical applications of the solid emulsion gels, in particular, for the transdermal delivery of hydrophilic and lipophilic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.J. Lawrence, G.D. Rees, Adv. Drug Deliv. Rev. 45, 89–121 (2000). doi:10.1016/S0169-409X(00)00103-4

    Article  PubMed  CAS  Google Scholar 

  2. M. Kreilgaard, Adv. Drug Deliv. Rev. 54, S77–S98 (2002). doi:10.1016/S0169-409X(02)00116-3

    Article  PubMed  CAS  Google Scholar 

  3. A. Spernath, A. Aserin, Adv. Colloid Interface Sci. 128–130, 47–64 (2006). doi:10.1016/j.cis.2006.11.016

    Article  PubMed  Google Scholar 

  4. M. Graziacascone, Z. Zhu, F. Borselli, L. Lazzeri, J. Mater. Sci.: Mater. Med. 13, 29–32 (2002). doi:10.1023/A:1013674200141

    Article  Google Scholar 

  5. D. Gulsen, A. Chauhan, Int. J. Pharm. 292, 95–117 (2005). doi:10.1016/j.ijpharm.2004.11.033

    Article  PubMed  CAS  Google Scholar 

  6. C. Holtze, K. Landfester, M. Antonietti, Macromol. Mater. Eng. 290, 1025–1028 (2005). doi:10.1002/mame.200500241

    Article  CAS  Google Scholar 

  7. H. Chen, D. Mou, D. Du, X. Chang, D. Zhu, J. Liu, H. Xu, X. Yang, Int. J. Pharm. 341, 78–84 (2007). doi:10.1016/j.ijpharm.2007.03.052

    Article  PubMed  CAS  Google Scholar 

  8. K.I. Shingel, M.P. Faure, L. Azoulay, C. Roberge, R.H. Deckelbaum, J. Tissue Eng. Regen. Med. 3, 383–393 (2008). doi:10.1002/term.101

    Article  Google Scholar 

  9. K.S. Anseth, C.N. Bowman, L.B. Peppas, Biomaterials 17, 1647–1657 (1996). doi:10.1016/0142-9612(96)87644-7

    Article  PubMed  CAS  Google Scholar 

  10. Faure MP, Shingel KI (2008) US Patent No. 7,351,787

  11. R. Snyders, K.I. Shingel, O. Zabeida, C. Roberge, M.F. Faure, L. Martinu, J.E. Klemberg-Sapieha, J. Biomed. Mater. Res. 83A, 88–97 (2007). doi:10.1002/jbm.a.31217

    Article  CAS  Google Scholar 

  12. K.I. Shingel, M.P. Faure, Biomacromolecules 6, 1635–1641 (2005). doi:10.1021/bm0492475

    Article  PubMed  CAS  Google Scholar 

  13. S. Tcholakova, N.D. Denkov, D. Sidzhakova, I.B. Ivanov, B. Campbell, Langmuir 19, 5640–5649 (2003). doi:10.1021/la034411f

    Article  CAS  Google Scholar 

  14. H.S. Kim, S.I. Hong, S.J. Kim, J. Mater. Process. Technol. 112, 109–113 (2001). doi:10.1016/S0924-0136(01)00565-9

    Article  Google Scholar 

  15. T. van Vliet, Colloid Polym. Sci. 266, 518–524 (1988). doi:10.1007/BF01420762

    Article  Google Scholar 

  16. N.K. Pandit, J. Kanjia, K. Patel, D.G. Pontikes, Int. J. Pharm. 122, 27–33 (1995). doi:10.1016/0378-5173(95)00032-E

    Article  CAS  Google Scholar 

  17. C. van der Poel, Rheol. Acta 1, 198–205 (1958). doi:10.1007/BF01968867

    Article  Google Scholar 

  18. C.M. Wijmans, E. Dickinson, J. Chem. Soc. Faraday Trans. 94, 129–137 (1998). doi:10.1039/a706632e

    Article  CAS  Google Scholar 

  19. G. Sala, G.A. van Aken, M. Cohen Stuart, F. van de Velde, J. Texture Stud. 38, 511–535 (2007). doi:10.1111/j.1745-4603.2007.00110.x

    Article  Google Scholar 

  20. F.E. Mitidieri, J.R. Wagner, Food Res. Int. 35, 547–557 (2002). doi:10.1016/S0963-9969(01)00155-7

    Article  CAS  Google Scholar 

  21. C. Solans, J.G. Dominguez, J.L. Parra, J. Heuser, S.E. Friberg, Colloid Polym. Sci. 266, 570–574 (1988). doi:10.1007/BF01420770

    Article  CAS  Google Scholar 

  22. N. Drelon, F. Leal-Calderon, Langmuir 23, 4792–4799 (2007). doi:10.1021/la070071c

    Article  PubMed  Google Scholar 

  23. R.O. Potts, M.L. Francoeur, J. Invest. Dermatol. 96, 495–499 (1991). doi:10.1111/1523-1747.ep12470197

    Article  PubMed  CAS  Google Scholar 

  24. V.H. Mak, R.O. Potts, R.H. Guy, Pharm. Res. 8, 1064–1065 (1991). doi:10.1023/A:1015873511692

    Article  PubMed  CAS  Google Scholar 

  25. H. Tang, D. Blankschtein, R. Langer, J. Pharm. Sci. 91, 1891–1907 (2002). doi:10.1002/jps.10177

    Article  PubMed  CAS  Google Scholar 

  26. T.M. Suhonen, J.A. Bouwstra, A. Urtti, J. Control Release 59, 149–161 (1999). doi:10.1016/S0168-3659(98)00187-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Lucas Poncelet, Maxime Paquette (Department of Engineering Physics, Ecole Polytechnique, Montreal), and Ludmila Anohina and Henadz Isakau (Bioartificial Gel Technologies) for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirill I. Shingel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shingel, K.I., Roberge, C., Zabeida, O. et al. Solid emulsion gel as a novel construct for topical applications: synthesis, morphology and mechanical properties. J Mater Sci: Mater Med 20, 681–689 (2009). https://doi.org/10.1007/s10856-008-3613-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3613-0

Keywords

Navigation