Skip to main content
Log in

PAN-based nanofiber reduced graphene oxide electrodes for supercapacitor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Supercapacitors, which are among the energy storage systems, have a high power density, a fast charge–discharge time, a long cycle life, and a low energy capacity. In this study, it is aimed to produce electrically conducting carbon nanofiber/reduced graphene oxide (CNF/rGO) composites as electrodes in supercapacitors. Polyacrylonitrile nanofibers containing different weight ratios of graphene oxide (0–10–20 and 40 wt% of rGO) were used as precursors for the production of supercapacitor electrodes. The electrospinning method and following carbonization process were applied to the precursors to produce CNF/rGO composites. The electrochemical properties of the produced CNF/rGO composites were investigated as electrodes. The supercapacitor electrode prepared with carbon nanofiber containing 10-wt% rGO shows high specific capacitance (305 F/g) and high energy density (47.6 Wh/kg). This study especially brings a new insight into the fabrication of high-performance hybrid electrodes for energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. P. Simon, Y. Gogotsi, Nat. Mater. 7, 845 (2008)

    Article  CAS  Google Scholar 

  2. B.K. Saikia, S.M. Benoy, M. Bora, J. Tamuly, M. Pandey, D. Bhattacharya, Fuel. 282, 118796 (2020)

    Article  CAS  Google Scholar 

  3. F. Béguin, V. Presser, A. Balducci, E. Frackowiak, Adv. Mater. 26, 2219 (2014)

    Article  Google Scholar 

  4. Y. Hou, R. Vidu, P. Stroeve, Ind. Eng. Chem. Res. 50, 8954 (2011)

    Article  CAS  Google Scholar 

  5. L. da Silva Lima, M. Quartier, A. Buchmayr, D. Sanjuan-Delmás, H. Laget, D. Corbisier, J. Mertens, J. Dewulf, Sustain. Energy Technol. Assessments. 46, 101286 (2021)

    Article  Google Scholar 

  6. A.S. Subburaj, B.N. Pushpakaran, S.B. Bayne, Renew. Sustain. Energy Rev. 45, 219 (2015)

    Article  Google Scholar 

  7. T. Mesbahi, A. Ouari, T. Ghennam, E.M. Berkouk, N. Rizoug, N. Mesbahi, M. Meradji, Renew. Sustain. Energy Rev. 40, 204 (2014)

    Article  Google Scholar 

  8. K.J. Lee, W. Bak, J.-J. Kim, M.A. Snyder, W.C. Yoo, Y.-E. Sung, J. Phys. Chem. C 119, 7604 (2015)

    Article  CAS  Google Scholar 

  9. J. Peters, M. Weil, Resources. 5, 46 (2016)

    Article  Google Scholar 

  10. D.L. Wood, J. Li, C. Daniel, J. Power Sources. 275, 234 (2015)

    Article  CAS  Google Scholar 

  11. L. Mauler, F. Duffner, W.G. Zeier, J. Leker, Energy Environ. Sci. 14, 4712 (2021)

    Article  Google Scholar 

  12. L. Zhang, X. Hu, Z. Wang, F. Sun, D.G. Dorrell, Renew. Sustain. Energy Rev. 81, 1868 (2018)

    Article  Google Scholar 

  13. Z. Lin, E. Goikolea, A. Balducci, K. Naoi, P.L. Taberna, M. Salanne, G. Yushin, P. Simon, Mater. Today. 21, 419 (2018)

    Article  CAS  Google Scholar 

  14. J. Libich, J. Máca, J. Vondrák, O. Čech, M. Sedlaříková, J. Energy Storage. 17, 224 (2018)

    Article  Google Scholar 

  15. S. Ahmed, A. Ahmed, M. Rafat, Mater. Res. Express. 5, 45508 (2018)

    Article  Google Scholar 

  16. M.B. Arvas, Synth. Met. 293, 117275 (2023)

    Article  CAS  Google Scholar 

  17. Y. Zhai, Y. Dou, D. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Adv. Mater. 23, 4828 (2011)

    Article  CAS  Google Scholar 

  18. M.B. Arvas, N. Karatepe, M. Gencten, Y. Sahin, Int. J. Energy Res. 46, 7348 (2022)

    Article  CAS  Google Scholar 

  19. R.M. Obodo, A.C. Nwanya, M. Arshad, C. Iroegbu, I. Ahmad, R.U. Osuji, M. Maaza, F.I. Ezema, Int. J. Energy Res. 44, 3192 (2020)

    Article  CAS  Google Scholar 

  20. S. Siyahjani, S. Oner, H. Diker, B. Gultekin, C. Varlikli, J. Power Sources. 467, 228353 (2020)

    Article  CAS  Google Scholar 

  21. Y. Jiang, J. Liu, ENERGY Environ. Mater. 2, 30 (2019)

    Article  Google Scholar 

  22. N. Koçyiğit, M.B. Arvas, S. Yazar, N. Açar-Selçuki, Y. Şahin, M. Özer, Ã. Bekaroğlu, Synth. Met. 292, 117242 (2023)

    Article  Google Scholar 

  23. S. Yazar, M.B. Arvas, Y. Sahin, Chem. Select (2022). https://doi.org/10.1002/slct.202200016

    Article  Google Scholar 

  24. S.-Y. Lu, M. Jin, Y. Zhang, Y.-B. Niu, J.-C. Gao, C.M. Li, Adv. Energy Mater. 8, 1702545 (2018)

    Article  Google Scholar 

  25. M. Toupin, D. Bélanger, I.R. Hill, D. Quinn, J. Power Sources. 140, 203 (2005)

    Article  CAS  Google Scholar 

  26. A.G. Pandolfo, A.F. Hollenkamp, J. Power Sources. 157, 11 (2006)

    Article  CAS  Google Scholar 

  27. D. Akinwande, C.J. Brennan, J.S. Bunch, P. Egberts, J.R. Felts, H. Gao, R. Huang, J.-S. Kim, T. Li, Y. Li, K.M. Liechti, N. Lu, H.S. Park, E.J. Reed, P. Wang, B.I. Yakobson, T. Zhang, Y.-W. Zhang, Y. Zhou, Y. Zhu, Extrem Mech. Lett. 13, 42 (2017)

    Article  Google Scholar 

  28. C. Soldano, A. Mahmood, E. Dujardin, Carbon N. Y. 48, 2127 (2010)

    Article  CAS  Google Scholar 

  29. Q. Ke, J. Wang, J. Mater. 2, 37 (2016)

    Google Scholar 

  30. Y. Zhao, J. Liu, B. Wang, J. Sha, Y. Li, D. Zheng, M. Amjadipour, J. MacLeod, N. Motta, ACS Appl. Mater. Interfaces. 9, 22588 (2017)

    Article  CAS  Google Scholar 

  31. X.-Q. Lin, W.-D. Wang, Q.-F. Lü, Y.-Q. Jin, Q. Lin, R. Liu, J. Mater. Sci. Technol. 33, 1339 (2017)

    Article  CAS  Google Scholar 

  32. P.P.A. Jose, M.S. Kala, N. Kalarikkal, S. Thomas, Mater. Today Proc. 5, 16306 (2018)

    Article  CAS  Google Scholar 

  33. Y. Zhou, Q. Bao, L.A.L. Tang, Y. Zhong, K.P. Loh, Chem. Mater. 21, 2950 (2009)

    Article  CAS  Google Scholar 

  34. W. Liu, M.-S. Song, B. Kong, Y. Cui, Adv. Mater. 29, 1603436 (2017)

    Article  Google Scholar 

  35. K.S. Ryu, K.M. Kim, N.-G. Park, Y.J. Park, S.H. Chang, J. Power Sources. 103, 305 (2002)

    Article  CAS  Google Scholar 

  36. N.-R. Chiou, A.J. Epstein, Adv. Mater. 17, 1679 (2005)

    Article  CAS  Google Scholar 

  37. J. Yan, J.-H. Choi, Y.G. Jeong, Mater. Des. 139, 72 (2018)

    Article  CAS  Google Scholar 

  38. L. Ji, X. Zhang, Nanotechnology. 20, 155705 (2009)

    Article  Google Scholar 

  39. J. Jauhari, M.R. Almafie, L. Marlina, Z. Nawawi, I. Sriyanti, RSC Adv. 11, 11233 (2021)

    Article  CAS  Google Scholar 

  40. H.H. Shi, S. Jang, A. Reza-Ugalde, H.E. Naguib, ACS Appl. Energy Mater. 3, 987 (2020)

    Article  CAS  Google Scholar 

  41. I.W. Siriwardane, N.P.W. Rathuwadu, D. Dahanayake, C. Sandaruwan, R.M. de Silva, K.M.N. de Silva, Nanoscale Adv. 3, 2585 (2021)

    Article  CAS  Google Scholar 

  42. Y. Zhang, F. Wang, H. Zhu, L. Zhou, X. Zheng, X. Li, Z. Chen, Y. Wang, D. Zhang, D. Pan, Appl. Surf. Sci. 426, 99 (2017)

    Article  CAS  Google Scholar 

  43. S. Gilje, S. Han, M. Wang, K.L. Wang, R.B. Kaner, Nano Lett. 7, 3394 (2007)

    Article  CAS  Google Scholar 

  44. S. Fouvry, J. Laporte, O. Perrinet, P. Jedrzejczyk, O. Graton, O. Alquier, J. Sautel, in 2017 IEEE holm conference on electrical contacts (2017), pp. 1–11

  45. X. Ren, H. Yang, S. Gen, J. Zhou, T. Yang, X. Zhang, Z. Cheng, S. Sun, Nanoscale. 8, 752 (2016)

    Article  CAS  Google Scholar 

  46. A.M. Dimiev, L.B. Alemany, J.M. Tour, ACS Nano. 7, 576 (2013)

    Article  CAS  Google Scholar 

  47. L.M. Dong, D.Y. Shi, Z. Wu, Q. Li, Z.D. Han, Dig. J. Nanomater Biostructures. 10, 855 (2015)

    Google Scholar 

  48. A. Viinikanoja, Z. Wang, J. Kauppila, C. Kvarnström, Phys. Chem. Chem. Phys. 14, 14003 (2012)

    Article  CAS  Google Scholar 

  49. M.S. Amir Faiz, C.A. Che Azurahanim, S.A. Raba’ah, M.Z. Ruzniza, Results Phys. 16, 102954 (2020)

    Article  Google Scholar 

  50. G. Ghaderi, H. Tavanai, M. Bazarganipour, Mater. Res. Express. 6, 105047 (2019)

    Article  CAS  Google Scholar 

  51. J. Lee, J. Yoon, J.-H. Kim, T. Lee, H. Byun, J. Appl. Polym. Sci. 135, 45858 (2018)

    Article  Google Scholar 

  52. C. Li, X. Wang, L. Xu, A. Gao, D. Xu, Compos. Interfaces. 27, 177 (2020)

    Article  CAS  Google Scholar 

  53. J. Zhang, X. Pan, Q. Xue, D. He, L. Zhu, Q. Guo, J. Memb. Sci. 532, 38 (2017)

    Article  CAS  Google Scholar 

  54. H.G. Kim, I.-K. Oh, S. Lee, S. Jeon, H. Choi, K. Kim, J.H. Yang, J.W. Chung, J. Lee, W.-H. Kim, H.-B.-R. Lee, ACS Appl. Mater. Interfaces. 11, 16804 (2019)

    Article  CAS  Google Scholar 

  55. T. Kshetri, D.T. Tran, T.I. Singh, N.H. Kim, K. Lau, J.H. Lee, Compos. Part. B Eng. 178, 107500 (2019)

    Article  CAS  Google Scholar 

  56. H. Xu, X. Li, G. Wang, J. Power Sources. 294, 16 (2015)

    Article  CAS  Google Scholar 

  57. S. Yazar, M.B. Arvas, S.M. Yilmaz, Y. Sahin, J. Energy Storage. 55, 105740 (2022)

    Article  Google Scholar 

  58. J. Ping, Int. J. Electrochem. Sci. 14, 6257 (2019)

    Article  CAS  Google Scholar 

  59. M.B. Arvas, H. Gürsu, M. Gencten, Y. Sahin, J. Energy Storage. 55, 105766 (2022)

    Article  Google Scholar 

  60. M. Besir Arvas, M. Gencten, Y. Sahin, J. Electroanal. Chem. 918, 116438 (2022)

    Article  CAS  Google Scholar 

  61. M.B. Arvas, S. Yazar, Y. Sahin, Synth. Met. 285, 117017 (2022)

    Article  CAS  Google Scholar 

  62. S. Yazar, M.B. Arvas, Y. Sahin, Int. J. Energy Res. 46, 8042 (2022)

    Article  CAS  Google Scholar 

  63. M.B. Arvas, M. Gencten, Y. Sahin, Ionics (Kiel). 27, 2241 (2021)

    Article  CAS  Google Scholar 

  64. F. Pu, Y. Bai, J. Lv, X. Zhao, G. Wu, C. Kong, B. Lei, X. Zhang, H. Jin, Z. Yang, ENERGY Environ. Mater. 5, 253 (2022)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Istanbul Technical University Scientific Research Project under MGA-2017-40834 project code and Gebze Technical University Scientific Research Project under 2022-A-113-04 project code.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by OE, MBA, and RY. The first draft of the manuscript was written by OE and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Osman Eksik.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The authors declare that they have no known personal relationships that could have appeared to influence the work reported in this paper. The authors declare that there are no potential conflicts of interest in any matter.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 366.4 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eksik, O., Arvas, M.B. & Yavuz, R. PAN-based nanofiber reduced graphene oxide electrodes for supercapacitor applications. J Mater Sci: Mater Electron 34, 1831 (2023). https://doi.org/10.1007/s10854-023-11266-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11266-0

Navigation