Skip to main content
Log in

One-step synthesized N-doped graphene-based electrode materials for supercapacitor applications

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this work, a novel one-step environmentally benign procedure for preparing nitrogen-doped graphene electrodes for high performance supercapacitors has been demonstrated for the first time, called Yucel’s method. N-doped graphene-based electrodes were synthesized in a short time, at room temperature, one step (no need for a second process for doping) and low-cost by the using of Yucel's method without harmful oxidizing and reducing chemicals. During the production of N-doped graphene-based electrodes by this method, which functional group will form on the graphene surface is determined by controlling the applied potential range. Also, a detail mechanism has been proposed for the incorporation of these functional groups on the graphene structure produced by Yucel’s method for the first time in literature. Since the chemical and morphological structure of each electrode is different, specific capacitance values are also different. The electrodes synthesized in a narrower synthesis potential range have shown higher capacity thanks to the catalytic effects of oxygenated functional groups (NO2, ▬COOH, ▬OH etc.) on their surfaces. Indeed, the relations between N including functional groups and specific capacitance properties of the electrodes were investigated in detail. After electrochemical, spectroscopic, and microscopic characterization of the materials, cyclic charge–discharge tests were carried out for 1000 cycles. The specific capacitance of the electrodes changed from 178 mF.cm−2 to 2034 mF.cm−2 in 10 mA.cm−2 current density as a function of the mesoporous structure. This structure type becomes more accessible for electrolyte penetration as the number of cycles increases.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Jurasz J, Canales FA, Kies A et al (2020) A review on the complementarity of renewable energy sources: concept, metrics, application and future research directions. Sol Energy 195:703–724. https://doi.org/10.1016/j.solener.2019.11.087

    Article  Google Scholar 

  2. Gencten M, Sahin Y (2020) A critical review on progress of the electrode materials of vanadium redox flow battery. Int J Energy Res 44:7903–7923. https://doi.org/10.1002/er.5487

    Article  CAS  Google Scholar 

  3. Koohi-Fayegh S, Rosen MA (2020) A review of energy storage types, applications and recent developments. J Energy Storage 27:101047. https://doi.org/10.1016/j.est.2019.101047

    Article  Google Scholar 

  4. Keskin AV, Gençten M, Bozar S, Arvas MB, Güneş S, Sahin Y (2020) Preparation of anatase form of TiO2 thin film at room temperature by electrochemical method as an alternative electron transport layer for inverted type organic solar cells. Thin Solid Films 706:138093. https://doi.org/10.1016/j.tsf.2020.138093

    Article  CAS  Google Scholar 

  5. Gokdemir Choi FP, Moeini Alishah H, Bozar S, Doyranli C, Koyuncu S, San N, Kahveci C, Cantürk Rodop M, Arvas MB, Gencten M, Sahin Y, Gunes S (2020) A novel interface layer for inverted perovskite solar cells fabricated in ambient air under high humidity conditions. Sol Energy 209:400–407. https://doi.org/10.1016/j.solener.2020.08.013

    Article  CAS  Google Scholar 

  6. Alishah HM, Kazici M, Ongül F, Bozar S, Cantürk Rodop M, Kahveci C, Arvas MB, Sahin Y, Gencten M, Kaleli M, Akyürekli S, Yilmaz HU, Bayram AB, Günes S (2020) Effect of UV exposure of ITO/PEDOT:PSS substrates on the performance of inverted-type perovskite solar cells. J Mater Sci Mater Electron 31:7968–7980. https://doi.org/10.1007/s10854-020-03336-4

    Article  CAS  Google Scholar 

  7. Gençten M (2018) Investigation the effects of boehmite and gibbsite on the electrochemical behaviours of Gel-VRLA batteries. Int J Electrochem Sci:11741–11751. https://doi.org/10.20964/2018.12.15

  8. Kocyigit N, Gencten M, Sahin M, Sahin Y (2020) A novel vanadium/cobalt redox couple in aqueous acidic solution for redox flow batteries. Int J Energy Res 44:411–424. https://doi.org/10.1002/er.4938

    Article  CAS  Google Scholar 

  9. Görçay H, Çelik İ, Şahin Y (2018) One-step potentiostatic codeposition and electrochemical studies of poly(1-pyrenyl)-2,5-di(2-thienyl)(pyrrole-co-pyrrole) film for electrochemical supercapacitors. Turk J Chem 42:958–973. https://doi.org/10.3906/kim-1707-77

  10. Tang Z, Wang JM, Mao XX, Chen QQ, Shen C, Zhang JQ (2007) Application of a novel gelled-electrolyte in valve-regulated lead-acid batteries with tubular positive plates. J Appl Electrochem 37:1163–1169. https://doi.org/10.1007/s10800-007-9381-6

    Article  CAS  Google Scholar 

  11. Gençten M, Gürsu H, Şahin Y (2016) Electrochemical investigation of the effects of V(V) and sulfuric acid concentrations on positive electrolyte for vanadium redox flow battery. Int J Hydrog Energy 41:9868–9875. https://doi.org/10.1016/j.ijhydene.2016.03.200

    Article  CAS  Google Scholar 

  12. Arvas MB, Gençten M, Sahin Y (2020) A two-dimensional material for high capacity supercapacitors: S-doped graphene. Int J Energy Res 44:1624–1635. https://doi.org/10.1002/er.4973

    Article  CAS  Google Scholar 

  13. Gürsu H, Güner Y, Dermenci KB, Gençten M, Buluç AF, Savacı U, Turan S, Şahin Y (2019) Preparation of N-doped graphene powders by cyclic voltammetry and a potential application of them: anode materials of Li-ion batteries. Int J Energy Res 43:5346–5354. https://doi.org/10.1002/er.4618

    Article  CAS  Google Scholar 

  14. Khalid M (2019) A review on the selected applications of battery-supercapacitor hybrid energy storage systems for microgrids. Energies 12:4559. https://doi.org/10.3390/en12234559

    Article  CAS  Google Scholar 

  15. Gorduk O, Gencten M, Gorduk S, Sahin M, Sahin Y (2021) Electrochemical fabrication and supercapacitor performances of metallo phthalocyanine/functionalized-multiwalled carbon nanotube/polyaniline modified hybrid electrode materials. J Energy Storage 33:102049. https://doi.org/10.1016/j.est.2020.102049

    Article  Google Scholar 

  16. Xiong C, Li M, Zhao W, Duan C, Dai L, Shen M, Xu Y, Ni Y (2020) A smart paper@polyaniline nanofibers incorporated vitrimer bifunctional device with reshaping, shape-memory and self-healing properties applied in high-performance supercapacitors and sensors. Chem Eng J 396:125318. https://doi.org/10.1016/j.cej.2020.125318

    Article  CAS  Google Scholar 

  17. Xiong C, Li M, Nie S, Dang W, Zhao W, Dai L, Ni Y (2020) Non-carbonized porous lignin-free wood as an effective scaffold to fabricate lignin-free Wood@Polyaniline supercapacitor material for renewable energy storage application. J Power Sources 471:228448. https://doi.org/10.1016/j.jpowsour.2020.228448

    Article  CAS  Google Scholar 

  18. Choi M-E, Kim S-W, Seo S-W (2012) Energy management optimization in a battery/supercapacitor hybrid energy storage system. IEEE Trans Smart Grid 3:463–472. https://doi.org/10.1109/TSG.2011.2164816

    Article  Google Scholar 

  19. Xiong C, Li B, Liu H, Zhao W, Duan C, Wu H, Ni Y (2020) A smart porous wood-supported flower-like NiS/Ni conjunction with vitrimer co-effect as a multifunctional material with reshaping, shape-memory, and self-healing properties for applications in high-performance supercapacitors, catalysts, and sensors. J Mater Chem A 8:10898–10908. https://doi.org/10.1039/D0TA03664A

    Article  CAS  Google Scholar 

  20. Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44:7484–7539. https://doi.org/10.1039/C5CS00303B

    Article  CAS  PubMed  Google Scholar 

  21. Arvas MB, Gürsu H, Gencten M, Sahin Y (2021) Preparation of different heteroatom doped graphene oxide based electrodes by electrochemical method and their supercapacitor applications. J Energy Storage 35:102328. https://doi.org/10.1016/j.est.2021.102328

    Article  Google Scholar 

  22. Eftekhari A (2017) Supercapacitors utilising ionic liquids. Energy Storage Mater 9:47–69. https://doi.org/10.1016/j.ensm.2017.06.009

    Article  Google Scholar 

  23. Noorden ZA, Sugawara S, Matsumoto S (2014) Noncorrosive separator materials for electric double layer capacitor. IEEJ Trans Electr Electron Eng 9:235–240. https://doi.org/10.1002/tee.21961

    Article  CAS  Google Scholar 

  24. Xiong C, Dang W, Nie S, Qin C, Li D, Dai L, Shen M, Xu Y, Ni Y (2021) Fabrication of high value cellulose nanofibers@Ni foam by non carbonization: various application developed during the preparation. Cellulose. 28:1455–1468. https://doi.org/10.1007/s10570-020-03597-6

    Article  CAS  Google Scholar 

  25. El-Kady MF, Strong V, Dubin S, Kaner RB (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science (80- ) 335:1326–1330. https://doi.org/10.1126/science.1216744

    Article  CAS  Google Scholar 

  26. Davies A, Audette P, Farrow B, Hassan F, Chen Z, Choi JY, Yu A (2011) Graphene-based flexible supercapacitors: pulse-electropolymerization of polypyrrole on free-standing graphene films. J Phys Chem C 115:17612–17620. https://doi.org/10.1021/jp205568v

    Article  CAS  Google Scholar 

  27. Meng C, Liu C, Chen L, Hu C, Fan S (2010) Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Lett 10:4025–4031. https://doi.org/10.1021/nl1019672

    Article  CAS  PubMed  Google Scholar 

  28. Giray Ersozoglu M (2019) A novel dioxythiophene based conducting polymer as electrode material for supercapacitor application. Int J Electrochem Sci:9504–9519. https://doi.org/10.20964/2019.10.35

  29. Xiong C, Li M, Zhao W, Duan C, Ni Y (2020) Flexible N-doped reduced graphene oxide/carbon nanotube-MnO2 film as a multifunctional material for high-performance supercapacitors, catalysts and sensors. J Mater 6:523–531. https://doi.org/10.1016/j.jmat.2020.03.008

    Article  Google Scholar 

  30. Ho K-C, Lin L-Y (2019) A review of electrode materials based on core–shell nanostructures for electrochemical supercapacitors. J Mater Chem A 7:3516–3530. https://doi.org/10.1039/C8TA11599K

    Article  CAS  Google Scholar 

  31. Gorduk O, Gorduk S, Gencten M, Sahin M, Sahin Y (2020) One-step electrochemical preparation of ternary phthalocyanine/acid-activated multiwalled carbon nanotube/polypyrrole-based electrodes and their supercapacitor applications. Int J Energy Res 44:9093–9111. https://doi.org/10.1002/er.5634

    Article  CAS  Google Scholar 

  32. Chen X, Paul R, Dai L (2017) Carbon-based supercapacitors for efficient energy storage. Natl Sci Rev 4:453–489. https://doi.org/10.1093/nsr/nwx009

    Article  CAS  Google Scholar 

  33. Arvas MB, Gürsu H, Gençten M, Sahin Y (2018) Electrochemical formation of molybdenum phosphate on a pencil graphite electrode and its potential application for the detection of phosphate ions. Anal Methods 10:4282–4291. https://doi.org/10.1039/C8AY01653D

    Article  CAS  Google Scholar 

  34. Koyun O, Gorduk S, Arvas MB, Sahin Y (2018) Electrochemically treated pencil graphite electrodes prepared in one step for the electrochemical determination of paracetamol. Russ J Electrochem 54:796–808. https://doi.org/10.1134/S1023193518110046

    Article  CAS  Google Scholar 

  35. Iro SZ (2016) A brief review on electrode materials for supercapacitor. Int J Electrochem Sci:10628–10643. https://doi.org/10.20964/2016.12.50

  36. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531. https://doi.org/10.1039/b813846j

    Article  CAS  PubMed  Google Scholar 

  37. Bose S, Kuila T, Mishra AK, Rajasekar R, Kim NH, Lee JH (2012) Carbon-based nanostructured materials and their composites as supercapacitor electrodes. J Mater Chem 22:767–784. https://doi.org/10.1039/C1JM14468E

    Article  CAS  Google Scholar 

  38. Li X, Cai W, An J et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science (80- ) 324:1312–1314. https://doi.org/10.1126/science.1171245

    Article  CAS  Google Scholar 

  39. Domun N, Hadavinia H, Zhang T, Sainsbury T, Liaghat GH, Vahid S (2015) Improving the fracture toughness and the strength of epoxy using nanomaterials—a review of the current status. Nanoscale 7:10294–10329. https://doi.org/10.1039/C5NR01354B

    Article  CAS  PubMed  Google Scholar 

  40. Lee M, Lee J, Park SY, Min B, Kim B, in I (2015) Production of graphene oxide from pitch-based carbon fiber. Sci Rep 5:11707. https://doi.org/10.1038/srep11707

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chee WK, Lim HN, Zainal Z, Huang NM, Harrison I, Andou Y (2016) Flexible graphene-based supercapacitors: a review. J Phys Chem C 120:4153–4172. https://doi.org/10.1021/acs.jpcc.5b10187

    Article  CAS  Google Scholar 

  42. Choi W, Lahiri I, Seelaboyina R, Kang YS (2010) Synthesis of graphene and its applications: a review. Crit Rev Solid State Mater Sci 35:52–71. https://doi.org/10.1080/10408430903505036

    Article  CAS  Google Scholar 

  43. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145. https://doi.org/10.1021/cr900070d

    Article  CAS  PubMed  Google Scholar 

  44. Cai B, Shao C, Qu L, Meng Y, Jin L (2019) Preparation of sulfur-doped graphene fibers and their application in flexible fibriform micro-supercapacitors. Front Mater Sci 13:145–153. https://doi.org/10.1007/s11706-019-0455-2

    Article  Google Scholar 

  45. Dai S, Liu Z, Zhao B, Zeng J, Hu H, Zhang Q, Chen D, Qu C, Dang D, Liu M (2018) A high-performance supercapacitor electrode based on N-doped porous graphene. J Power Sources 387:43–48. https://doi.org/10.1016/j.jpowsour.2018.03.055

    Article  CAS  Google Scholar 

  46. Gürsu H, Gençten M, Şahin Y (2018) Preparation of N-doped graphene-based electrode via electrochemical method and its application in vanadium redox flow battery. Int J Energy Res 42:3851–3860. https://doi.org/10.1002/er.4117

    Article  CAS  Google Scholar 

  47. Gursu H, Gencten M, Sahin Y (2018) Preparation of sulphur-doped graphene-based electrodes by cyclic voltammetry: a potential application for vanadium redox flow battery. Int J Electrochem Sci 13:875–885. https://doi.org/10.20964/2018.01.71

  48. Gursu H, Gençten M, Sahin Y (2018) Novel chlorine doped graphene electrodes for positive electrodes of a vanadium redox flow battery. Int J Energy Res 42:3303–3314. https://doi.org/10.1002/er.4083

    Article  CAS  Google Scholar 

  49. Zhao X, Dong H, Xiao Y, Hu H, Cai Y, Liang Y, Sun L, Liu Y, Zheng M (2016) Three-dimensional nitrogen-doped graphene as binder-free electrode materials for supercapacitors with high volumetric capacitance and the synergistic effect between nitrogen configuration and supercapacitive performance. Electrochim Acta 218:32–40. https://doi.org/10.1016/j.electacta.2016.09.096

    Article  CAS  Google Scholar 

  50. Wang M, Ma Y (2017) Nitrogen-doped graphene forests as electrodes for high-performance wearable supercapacitors. Electrochim Acta 250:320–326. https://doi.org/10.1016/j.electacta.2017.08.073

    Article  CAS  Google Scholar 

  51. Pu N-W, Peng Y-Y, Wang P-C, Chen CY, Shi JN, Liu YM, Ger MD, Chang CL (2014) Application of nitrogen-doped graphene nanosheets in electrically conductive adhesives. Carbon N Y 67:449–456. https://doi.org/10.1016/j.carbon.2013.10.017

    Article  CAS  Google Scholar 

  52. Jiang M, Xing L-B, Zhang J-L, Hou SF, Zhou J, Si W, Cui H, Zhuo S (2016) Carbohydrazide-dependent reductant for preparing nitrogen-doped graphene hydrogels as electrode materials in supercapacitor. Appl Surf Sci 368:388–394. https://doi.org/10.1016/j.apsusc.2016.02.009

    Article  CAS  Google Scholar 

  53. Gürsu H, Gençten M, Şahin Y (2017) One-step electrochemical preparation of graphene-coated pencil graphite electrodes by cyclic voltammetry and their application in vanadium redox batteries. Electrochim Acta 243:239–249. https://doi.org/10.1016/j.electacta.2017.05.065

    Article  CAS  Google Scholar 

  54. Arvas MB, Gorduk O, Gencten M, Sahin Y (2019) Preparation of a novel electrochemical sensor for phosphate detection based on a molybdenum blue modified poly(vinyl chloride) coated pencil graphite electrode. Anal Methods 11:3874–3881. https://doi.org/10.1039/C9AY01275C

    Article  CAS  Google Scholar 

  55. Arvas MB, Gorduk O, Gencten M, Sahin Y (2021) Differential pulse voltammetric (DPV) determination of phosphomolybdenum complexes by a poly(vinyl chloride) coated molybdenum nlue modified pencil graphite electrode (PVC-MB-PGE). Anal Lett 54:492–511. https://doi.org/10.1080/00032719.2020.1772806

    Article  CAS  Google Scholar 

  56. Peng XY, Liu XX, Diamond D, Lau KT (2011) Synthesis of electrochemically-reduced graphene oxide film with controllable size and thickness and its use in supercapacitor. Carbon N Y 49:3488–3496. https://doi.org/10.1016/j.carbon.2011.04.047

    Article  CAS  Google Scholar 

  57. Wang X, Cao X, Bourgeois L, Guan H, Chen S, Zhong Y, Tang DM, Li H, Zhai T, Li L, Bando Y, Golberg D (2012) N-doped graphene-SnO2 sandwich paper for high-performance lithium-ion batteries. Adv Funct Mater 22:2682–2690. https://doi.org/10.1002/adfm.201103110

    Article  CAS  Google Scholar 

  58. Schiros T, Nordlund D, Pálová L, Prezzi D, Zhao L, Kim KS, Wurstbauer U, Gutiérrez C, Delongchamp D, Jaye C, Fischer D, Ogasawara H, Pettersson LGM, Reichman DR, Kim P, Hybertsen MS, Pasupathy AN (2012) Connecting dopant bond type with electronic structure in n-doped graphene. Nano Lett 12:4025–4031. https://doi.org/10.1021/nl301409h

    Article  CAS  PubMed  Google Scholar 

  59. López-Salas N, Gutiérrez MC, Ania CO, Muñoz-Márquez MA, Luisa Ferrer M, Monte F (2016) Nitrogen-doped carbons prepared from eutectic mixtures as metal-free oxygen reduction catalysts. J Mater Chem A 4:478–488. https://doi.org/10.1039/C5TA08630B

    Article  CAS  Google Scholar 

  60. Oh YJ, Yoo JJ, Kim YI et al (2014) Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor. Electrochim Acta 116:118–128. https://doi.org/10.1016/j.electacta.2013.11.040

    Article  CAS  Google Scholar 

  61. Zhang D, He C, Wang Y, Zhao J, Wang J, Li K (2019) Oxygen-rich hierarchically porous carbons derived from pitch-based oxidized spheres for boosting the supercapacitive performance. J Colloid Interface Sci 540:439–447. https://doi.org/10.1016/j.jcis.2019.01.038

    Article  CAS  PubMed  Google Scholar 

  62. Kerisit S, Schwenzer B, Vijayakumar M (2014) Effects of oxygen-containing functional groups on supercapacitor performance. J Phys Chem Lett 5:2330–2334. https://doi.org/10.1021/jz500900t

    Article  CAS  PubMed  Google Scholar 

  63. Yu M, Zhang S, Chen Y, Jin H, Zhang Y, Lu L, Shu Z, Hou S, Xie B, Cui H (2018) A green method to reduce graphene oxide with carbonyl groups residual for enhanced electrochemical performance. Carbon N Y 133:101–108. https://doi.org/10.1016/j.carbon.2018.03.019

    Article  CAS  Google Scholar 

  64. Fang Y, Luo B, Jia Y, Li X, Wang B, Song Q, Kang F, Zhi L (2012) Renewing functionalized graphene as electrodes for high-performance supercapacitors. Adv Mater 24:6348–6355. https://doi.org/10.1002/adma.201202774

    Article  CAS  PubMed  Google Scholar 

  65. Senthilkumar K, Jeong S, Lah MS, Sohn KS, Pyo M (2016) Potentiostatic activation of as-made graphene electrodes for high-rate performance in supercapacitors. J Power Sources 329:558–566. https://doi.org/10.1016/j.jpowsour.2016.08.127

    Article  CAS  Google Scholar 

  66. Yun S, Kang S-O, Park S, Park HS (2014) CO2-activated, hierarchical trimodal porous graphene frameworks for ultrahigh and ultrafast capacitive behavior. Nanoscale 6:5296–5302. https://doi.org/10.1039/C4NR00713A

    Article  CAS  PubMed  Google Scholar 

  67. Koyun O, Gorduk S, Arvas MB, Sahin Y (2017) Direct, one-step synthesis of molybdenum blue using an electrochemical method, and characterization studies. Synth Met 233:111–118. https://doi.org/10.1016/j.synthmet.2017.09.009

    Article  CAS  Google Scholar 

  68. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57. https://doi.org/10.1016/j.ssc.2007.03.052

    Article  CAS  Google Scholar 

  69. Herron CR, Coleman KS, Edwards RS, Mendis BG (2011) Simple and scalable route for the ‘bottom-up’ synthesis of few-layer graphene platelets and thin films. J Mater Chem 21:3378. https://doi.org/10.1039/c0jm03437a

  70. Kumar R, Naqvi S, Gupta N, Gaurav K, Khan S, Kumar P, Rana A, Singh RK, Bharadwaj R, Chand S (2015) Bulk synthesis of highly conducting graphene oxide with long range ordering. RSC Adv 5:35893–35898. https://doi.org/10.1039/C5RA01943E

    Article  CAS  Google Scholar 

  71. Kumar MP, Kesavan T, Kalita G, Ragupathy P, Narayanan TN, Pattanayak DK (2014) On the large capacitance of nitrogen doped graphene derived by a facile route. RSC Adv 4:38689–38697. https://doi.org/10.1039/C4RA04927F

    Article  CAS  Google Scholar 

  72. Liu Y, Li J, Li W, Li Y, Zhan F, Tang H, Chen Q (2016) Exploring the nitrogen species of nitrogen doped graphene as electrocatalysts for oxygen reduction reaction in Al–air batteries. Int J Hydrog Energy 41:10354–10365. https://doi.org/10.1016/j.ijhydene.2015.10.109

    Article  CAS  Google Scholar 

  73. Zhang Y, Sun Z, Wang H, Wang Y, Liang M, Xue S (2015) Nitrogen-doped graphene as a cathode material for dye-sensitized solar cells: effects of hydrothermal reaction and annealing on electrocatalytic performance. RSC Adv 5:10430–10439. https://doi.org/10.1039/C4RA13224F

    Article  CAS  Google Scholar 

  74. Gong Y, Li D, Fu Q, Pan C (2015) Influence of graphene microstructures on electrochemical performance for supercapacitors. Prog Nat Sci Mater Int 25:379–385. https://doi.org/10.1016/j.pnsc.2015.10.004

    Article  CAS  Google Scholar 

  75. Yan J, Wang Q, Wei T, Jiang L, Zhang M, Jing X, Fan Z (2014) Template-Assisted low temperature synthesis of functionalized graphene for ultrahigh volumetric performance supercapacitors. ACS Nano 8:4720–4729. https://doi.org/10.1021/nn500497k

    Article  CAS  PubMed  Google Scholar 

  76. Wang H, Maiyalagan T, Wang X (2012) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal 2:781–794. https://doi.org/10.1021/cs200652y

    Article  CAS  Google Scholar 

  77. Ou J, Zhang Y, Chen L, Zhao Q, Meng Y, Guo Y, Xiao D (2015) Nitrogen-rich porous carbon derived from biomass as a high performance anode material for lithium ion batteries. J Mater Chem A 3:6534–6541. https://doi.org/10.1039/C4TA06614F

    Article  CAS  Google Scholar 

  78. Yang M, Zhou L, Wang J, Liu Z, Liu Z (2012) Evolutionary chlorination of graphene: from charge-transfer complex to covalent bonding and nonbonding. J Phys Chem C 116:844–850. https://doi.org/10.1021/jp2088143

    Article  CAS  Google Scholar 

  79. Gençten M, Dönmez KB, Şahin Y, Pekmez K, Suvacı E (2014) Voltammetric and electrochemical impedimetric behavior of silica-based gel electrolyte for valve-regulated lead-acid battery. J Solid State Electrochem 18:2469–2479. https://doi.org/10.1007/s10008-014-2507-y

    Article  CAS  Google Scholar 

  80. Dönmez KB, Gençten M, Şahin Y (2017) A novel polysiloxane-based polymer as a gel agent for gel–VRLA batteries. Ionics (Kiel) 23:2077–2089. https://doi.org/10.1007/s11581-017-2040-y

    Article  CAS  Google Scholar 

  81. Thomas MGSR, Bruce PG, Goodenough JB (1985) AC impedance analysis of polycrystalline insertion electrodes: application to Li1−xCoO2. J Electrochem Soc 132:1521–1528. https://doi.org/10.1149/1.2114158

    Article  CAS  Google Scholar 

  82. Murakami TN, Grätzel M (2008) Counter electrodes for DSC: application of functional materials as catalysts. Inorg Chim Acta 361:572–580. https://doi.org/10.1016/j.ica.2007.09.025

    Article  CAS  Google Scholar 

  83. Deng Y, Huang Y, Ren D, Handoko AD, Seh ZW, Hirunsit P, Yeo BS (2018) On the role of sulfur for the selective electrochemical reduction of CO2 to formate on CuS x catalysts. ACS Appl Mater Interfaces 10:28572–28581. https://doi.org/10.1021/acsami.8b08428

    Article  CAS  PubMed  Google Scholar 

  84. Oda H, Yamashita A, Minoura S, Okamoto M, Morimoto T (2006) Modification of the oxygen-containing functional group on activated carbon fiber in electrodes of an electric double-layer capacitor. J Power Sources 158:1510–1516. https://doi.org/10.1016/j.jpowsour.2005.10.061

    Article  CAS  Google Scholar 

  85. Li H, Liang S, Li J, He L (2013) The capacitive deionization behaviour of a carbon nanotube and reduced graphene oxide composite. J Mater Chem A 1:6335. https://doi.org/10.1039/c3ta10681k

    Article  CAS  Google Scholar 

  86. Noonan O, Liu Y, Huang X, Yu C (2018) Layered graphene/mesoporous carbon heterostructures with improved mesopore accessibility for high performance capacitive deionization. J Mater Chem A 6:14272–14280. https://doi.org/10.1039/C8TA03114B

    Article  CAS  Google Scholar 

  87. Wang Y, Song Y, Xia Y (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev 45:5925–5950. https://doi.org/10.1039/C5CS00580A

    Article  CAS  PubMed  Google Scholar 

  88. Wang H, Fan R, Miao J, Deng J, Wang Y (2019) Oxygen groups immobilized on micropores for enhancing the pseudocapacitance. ACS Sustain Chem Eng 7:11407–11414. https://doi.org/10.1021/acssuschemeng.9b01201

    Article  CAS  Google Scholar 

  89. Rajagopalan B, Chung JS (2014) Reduced chemically modified graphene oxide for supercapacitor electrode. Nanoscale Res Lett 9:535. https://doi.org/10.1186/1556-276X-9-535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hyun C, Rollings R, Li J (2012) Probing access resistance of solid-state nanopores with a scanning-probe microscope tip. Small 8:385–392. https://doi.org/10.1002/smll.201101337

    Article  CAS  PubMed  Google Scholar 

  91. Kim BK, Sy S, Yu A, Zhang J (2015) Electrochemical supercapacitors for energy storage and conversion. In: Handbook of clean energy systems. John Wiley & Sons, Ltd, Chichester, pp 1–25

    Google Scholar 

  92. Shao Y, Li J, Li Y, Wang H, Zhang Q, Kaner RB (2017) Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene films. Mater Horiz 4:1145–1150. https://doi.org/10.1039/C7MH00441A

    Article  CAS  Google Scholar 

  93. Eustache E, Douard C, Demortière A, de Andrade V, Brachet M, le Bideau J, Brousse T, Lethien C (2017) High areal energy 3d-interdigitated micro-supercapacitors in aqueous and ionic liquid electrolytes. Adv Mater Technol 2:1700126. https://doi.org/10.1002/admt.201700126

    Article  CAS  Google Scholar 

  94. Li X, Shao J, Kim S-K, Yao C, Wang J, Miao YR, Zheng Q, Sun P, Zhang R, Braun PV (2018) High energy flexible supercapacitors formed via bottom-up infilling of gel electrolytes into thick porous electrodes. Nat Commun 9:2578. https://doi.org/10.1038/s41467-018-04937-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Xie Y, Zhou Y (2019) Enhanced capacitive performance of activated carbon paper electrode material. J Mater Res 34:2472–2481. https://doi.org/10.1557/jmr.2019.224

    Article  CAS  Google Scholar 

  96. Sambath Kumar K, Cherusseri J, Thomas J (2019) Two-dimensional Mn3O4 nanowalls grown on carbon fibers as electrodes for flexible supercapacitors. ACS Omega 4:4472–4480. https://doi.org/10.1021/acsomega.8b03309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Du H, Xie Y, Xia C et al (2014) Electrochemical capacitance of polypyrrole–titanium nitride and polypyrrole–titania nanotube hybrids. New J Chem 38:1284. https://doi.org/10.1039/c3nj01286g

    Article  CAS  Google Scholar 

  98. Wu G, Tan P, Wu X, Peng L, Cheng H, Wang CF, Chen W, Yu Z, Chen S (2017) High-performance wearable micro-supercapacitors based on microfluidic-directed nitrogen-doped graphene fiber electrodes. Adv Funct Mater 27:1702493. https://doi.org/10.1002/adfm.201702493

    Article  CAS  Google Scholar 

  99. Jha PK, Singh SK, Kumar V, Rana S, Kurungot S, Ballav N (2017) High-Level supercapacitive performance of chemically reduced graphene oxide. Chem 3:846–860. https://doi.org/10.1016/j.chempr.2017.08.011

    Article  CAS  Google Scholar 

  100. Han H, Lee JS, Cho S (2019) Comparative studies on two-electrode symmetric supercapacitors based on polypyrrole:poly(4-styrenesulfonate) with different molecular weights of poly(4-styrenesulfonate). Polymers (Basel) 11:232. https://doi.org/10.3390/polym11020232

    Article  CAS  Google Scholar 

  101. Ho V, Zhou C, Kulinsky L, Madou M (2013) Fabrication of 3D polypyrrole microstructures and their utilization as electrodes in supercapacitors. J Micromech Microeng 23:125029. https://doi.org/10.1088/0960-1317/23/12/125029

    Article  CAS  Google Scholar 

  102. Ansari MZ, Parveen N, Nandi DK, Ramesh R, Ansari SA, Cheon T, Kim SH (2019) Enhanced activity of highly conformal and layered tin sulfide (SnSx) prepared by atomic layer deposition (ALD) on 3D metal scaffold towards high performance supercapacitor electrode. Sci Rep 9:10225. https://doi.org/10.1038/s41598-019-46679-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by YTU BAPK with the project number FDK-2019-3573.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yucel Sahin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arvas, M.B., Gencten, M. & Sahin, Y. One-step synthesized N-doped graphene-based electrode materials for supercapacitor applications. Ionics 27, 2241–2256 (2021). https://doi.org/10.1007/s11581-021-03986-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-03986-2

Keywords

Navigation