Skip to main content
Log in

Facile synthesis of bismuth ferrite nanoparticles for ppm-level isopropanol gas sensor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Breath gas detection has attracted significant attention for the early screening of lung cancer. In this paper, we synthesized bismuth ferrite (BiFeO3) nanoparticles via a green and facile microwave hydrothermal method for detecting low concentration isopropanol. The influence of material’s synthesis process parameters, including temperature, time and power of synthesis on the physicochemical properties, has been explored. The structure, morphology and other material properties of BiFeO3 were analyzed by a series of characterization methods such as scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray electron spectroscopy (XPS). The effects of synthesis process parameters and testing conditions on gas sensing performance were investigated by a four-channel testing chamber. In addition, the mechanism of gas-sensitive response was also discussed. Considering the authentic situation of exhaled breath of human, we conducted the experiment of ultralow concentration and high humidity systematically. Typically, the BiFeO3 gas sensor revealed extraordinary sensitive performance at an optimal working temperature of 275 °C. An excellent linear relationship existed in the response and gas concentration, as the response value can reach 3.9 towards 1 ppm isopropanol even if it is in a 100% relative humidity (RH) atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. B. He, H.Y. Jin, Y.W. Wang, C.M. Fan, Y.F. Wang, X.C. Zhang, J.X. Liu, R. Li, J.W. Liu, Rare. Met. 41, 132–143 (2022). https://doi.org/10.1007/s12598-021-01762-9

    Article  CAS  Google Scholar 

  2. J. Ferlay, M. Colombet, I. Soerjomataram, C. Mathers, D.M. Parkin, M. Pineros, A. Znaor, F. Bray, Int. J. Cancer. 144, 1941–1953 (2019). https://doi.org/10.1002/ijc.31937

    Article  CAS  Google Scholar 

  3. C. Allemani, T. Matsuda, V. Di Carlo, R. Harewood, M. Matz, M. Niksic, A. Bonaventure, M. Valkov, C.J. Johnson, J. Esteve, O.J. Ogunbiyi, G. Azevedo e Silva, W.-Q. Chen, S. Eser, G. Engholm, C.A. Stiller, A. Monnereau, R.R. Woods, O. Visser, G.H. Lim, J. Aitken, H.K. Weir, M.P. Coleman, C.W. Grp, Lancet 391, 1023–1075 (2018). https://doi.org/10.1016/S0140-6736(17)33326-3s

    Article  Google Scholar 

  4. Y.L. Liu, Y.H. Sun, Y. Zhao, C.L. Li, F.L. Zhao, X.H. Yao, R.Q. Hang, P.K. Chu, Rare. Met. 41, 78–85 (2022). https://doi.org/10.1007/s12598-021-01707-2

    Article  CAS  Google Scholar 

  5. M.F. Reed, M. Molloy, E.L. Dalton, J.A. Howington, Am. J. Surg. 188, 598–602 (2004). https://doi.org/10.1016/j.amjsurg.2004.07.037

    Article  Google Scholar 

  6. Z. Khatoon, H. Fouad, H.K. Seo, M. Hashem, Z.A. Ansari, S.G. Ansari, J. Mater. Sci. Mater. Electron. 31, 15751–15763 (2020). https://doi.org/10.1007/s10854-020-04137-5

    Article  CAS  Google Scholar 

  7. J.E. Szulejko, M. McCulloch, J. Jackson, D.L. McKee, J.C. Walker, T. Solouki, IEEE Sens. J. 10, 185–210 (2010). https://doi.org/10.1109/jsen.2009.2035669

    Article  CAS  Google Scholar 

  8. K. Rezaei, S. Nasirian, J. Mater. Sci. Mater. Electron. 32, 5199–5214 (2021). https://doi.org/10.1007/s10854-021-05251-8

    Article  CAS  Google Scholar 

  9. M. Salimi, S. Hosseini, Sens. Actuators, B 344, 130127 (2021). https://doi.org/10.1016/j.snb.2021.130127

    Article  CAS  Google Scholar 

  10. G. Konvalina, H. Haick, Acc. Chem. Res. 47, 66–76 (2014). https://doi.org/10.1021/ar400070m

    Article  CAS  Google Scholar 

  11. P.J. Mazzone, X.-F. Wang, Y. Xu, T. Mekhail, M.C. Beukemann, J. Na, J.W. Kemling, K.S. Suslick, M. Sasidhar, J. Thorac. Oncol. 7, 137–142 (2012). https://doi.org/10.1097/JTO.0b013e318233d80f

    Article  Google Scholar 

  12. H. Zhao, L. Liu, X. Lin, J. Dai, S. Liu, T. Fei, T. Zhang, Acs. Sens. 5, 346–352 (2020). https://doi.org/10.1021/acssensors.9b01763

    Article  CAS  Google Scholar 

  13. D. Zhang, Y. Fan, G. Li, W. Du, R. Li, Y. Liu, Z. Cheng, J. Xu, Sens. Actuators, B. 302, 127187 (2020). https://doi.org/10.1016/j.snb.2019.127187

    Article  CAS  Google Scholar 

  14. Y. Li, Y.L. Lu, K.D. Wu, D.Z. Zhang, M. Debliquy, C. Zhang, Rare Met. 40, 1477–1493 (2021). https://doi.org/10.1007/s12598-020-01557-4

    Article  CAS  Google Scholar 

  15. D. Zhang, Z. Yang, S. Yu, Q. Mi, Q. Pan, Coord. Chem. Rev. 413, 213272 (2020). https://doi.org/10.1016/j.ccr.2020.213272

    Article  CAS  Google Scholar 

  16. D. Zhang, Y. Yang, Z. Xu, D. Wang, C. Du, J. Mater. Chem. A 10, 10935–10949 (2022). https://doi.org/10.1039/d2ta01788a

    Article  CAS  Google Scholar 

  17. H. Zhang, W. Jo, K. Wang, K.G. Webber, Ceram. Int. 40, 4759–4765 (2014). https://doi.org/10.1016/j.ceramint.2013.09.020

    Article  CAS  Google Scholar 

  18. T.-F. Cao, J.-Q. Dai, X.-W. Wang, Ceram. Int. 46, 7954–7960 (2020). https://doi.org/10.1016/j.ceramint.2019.12.016

    Article  CAS  Google Scholar 

  19. Y. Hong, J. Li, H. Bai, Z.J. Song, M. Wang, Z.X. Zhou, J. Adv. Ceram. 9, 641–646 (2020). https://doi.org/10.1007/s40145-020-0398-1

    Article  CAS  Google Scholar 

  20. H. Xie, K. Wang, Y. Jiang, Y. Zhao, X. Wang, Synth. React. Inorg. M. 44, 1363–1367 (2014). https://doi.org/10.1080/15533174.2013.801859

    Article  CAS  Google Scholar 

  21. G. Dong, H. Fan, Z. Cheng, S. Zhang, Ceram. Int. 46, 26205–26209 (2020). https://doi.org/10.1016/j.ceramint.2020.06.306

    Article  CAS  Google Scholar 

  22. Z. Wang, J.Y. Zhu, W.F. Xu, J. Sui, H. Peng, X.D. Tang, Mater. Chem. Phys. 135, 330–333 (2012). https://doi.org/10.1016/j.matchemphys.2012.04.053

    Article  CAS  Google Scholar 

  23. S.Z. Wu, Y. Wu, S.Q. Yin, X.G. Xu, J. Miao, Y. Jiang, Rare Met. 36, 32–36 (2017). https://doi.org/10.1007/s12598-016-0697-4

    Article  CAS  Google Scholar 

  24. K.D. Wu, J.Y. Xu, M. Debliquy, C. Zhang, Rare Met. 40, 1768–1777 (2021). https://doi.org/10.1007/s12598-020-01609-9

    Article  CAS  Google Scholar 

  25. C. Zhang, Y. Li, G.F. Liu, H.L. Liao, Rare Met. 41, 871–876 (2022). https://doi.org/10.1007/s12598-021-01840-y

    Article  CAS  Google Scholar 

  26. Y. Luo, A. Ly, D. Lahem, C. Zhang, M. Debliquy, J. Mater. Sci. 56, 3230–3245 (2021). https://doi.org/10.1007/s10853-020-05453-1

    Article  CAS  Google Scholar 

  27. S.P. Subin David, S. Veeralakshmi, M. Sakthi Priya, S. Nehru, S. Kalaiselvam, J. Mater. Sci. Mater. Electron. 33, 11498–11510 (2022). https://doi.org/10.1007/s10854-022-08124-w

    Article  CAS  Google Scholar 

  28. K. Wu, C. Zhang, J. Mater. Sci. Mater. Electron. 31, 7937–7945 (2020). https://doi.org/10.1007/s10854-020-03332-8

    Article  CAS  Google Scholar 

  29. C. Chen, J.R. Cheng, S.W. Yu, L.J. Che, Z.Y. Meng, J. Cryst. Growth 291, 135–139 (2006). https://doi.org/10.1016/j.jcrysgro.2006.02.048

    Article  CAS  Google Scholar 

  30. A. Hardy, S. Gielis, H. Van den Rul, J. D’Haen, M.K. Van Bael, J. Mullens, J. Eur. Ceram. Soc. 29, 3007–3013 (2009). https://doi.org/10.1016/j.jeurceramsoc.2009.05.018

    Article  CAS  Google Scholar 

  31. C. Ponzoni, R. Rosa, M. Cannio, V. Buscaglia, E. Finocchio, P. Nanni, C. Leonelli, J. Alloys Compd. 558, 150–159 (2013). https://doi.org/10.1016/j.jallcom.2013.01.039

    Article  CAS  Google Scholar 

  32. S. Li, G. Zhang, H. Zheng, N. Wang, Y. Zheng, P. Wang, Rsc. Adv. 6, 82439–82446 (2016). https://doi.org/10.1039/c6ra12728b

    Article  CAS  Google Scholar 

  33. W. Cao, Z. Chen, T. Gao, D. Zhou, X. Leng, F. Niu, Y. Zhu, L. Qin, J. Wang, Y. Huang, Mater. Chem. Phys. 175, 1–5 (2016). https://doi.org/10.1016/j.matchemphys.2016.02.067

    Article  CAS  Google Scholar 

  34. F. Majid, S. Riaz, S. Naseem, J. Sol-Gel. Sci. Technol. 74, 310–319 (2015). https://doi.org/10.1007/s10971-014-3477-3

    Article  CAS  Google Scholar 

  35. X. Xing, L. Du, D. Feng, C. Wang, M. Yao, X. Huang, S. Zhang, D. Yang, J. Mater. Chem. A. 8, 26004–26012 (2020). https://doi.org/10.1039/d0ta09321a

    Article  CAS  Google Scholar 

  36. R.L. Palomino-Resendiz, A.M. Bolarín-Miró, F. Pedro-García, F. Sánchez-De Jesús, J.P. Espinós-Manzorro, C.A. Cortés-Escobedo, Ceram. Int. 48, 14746–14753 (2022). https://doi.org/10.1016/j.ceramint.2022.02.011

    Article  CAS  Google Scholar 

  37. D. Wang, D. Zhang, Q. Mi, Sens. Actuators, B. 350, 130830 (2022). https://doi.org/10.1016/j.snb.2021.130830

    Article  CAS  Google Scholar 

  38. D. Zhang, X. Zong, Z. Wu, Y. Zhang, ACS. Appl. Mater. Interfaces. 10, 32631–32639 (2018). https://doi.org/10.1021/acsami.8b08493

    Article  CAS  Google Scholar 

  39. D. Hu, B. Han, R. Han, S. Deng, Y. Wang, Q. Li, Y. Wang, New. J. Chem. 38, 2443–2450 (2014). https://doi.org/10.1039/c3nj01482g

    Article  CAS  Google Scholar 

  40. J.K. Srivastava, P. Pandey, V.N. Mishra, R. Dwivedi, J. Nat. Gas Chem. 20, 179–183 (2011). https://doi.org/10.1016/s1003-9953(10)60168-5

    Article  CAS  Google Scholar 

  41. H. Zhang, Z. Jin, M.-D. Xu, Y. Zhang, J. Huang, H. Cheng, X.-F. Wang, Z.-L. Zheng, Y. Ding, IEEE. Sens. J. 21, 13041–13047 (2021). https://doi.org/10.1109/jsen.2021.3054654

    Article  CAS  Google Scholar 

  42. S.C. Wang, X.H. Wang, G.Q. Qiao, X.Y. Chen, X.Z. Wang, N.N. Wu, J. Tian, H.Z. Cui, Rare Met. 41, 960–971 (2022). https://doi.org/10.1007/s12598-021-01846-6

    Article  CAS  Google Scholar 

  43. R. Zhao, Z. Wang, T. Zou, Z. Wang, Y. Yang, X. Xing, Y. Wang, Chem. Lett. 47, 881–882 (2018). https://doi.org/10.1246/cl.180296

    Article  CAS  Google Scholar 

  44. C. Zhang, Y.C. Huan, Y. Li, Y.F. Luo, M. Debliquy, J. Adv. Ceram. 11, 379–391 (2022). https://doi.org/10.1007/s40145-021-0530-x

    Article  CAS  Google Scholar 

  45. S. Zhang, H.Y. Xiao, S.M. Peng, G.X. Yang, Z.J. Liu, X.T. Zu, S. Li, D.J. Singh, L.W. Martin, L. Qiao, Phys. Rev. Appl. 10, 044004 (2018). https://doi.org/10.1103/PhysRevApplied.10.044004

    Article  CAS  Google Scholar 

  46. C. Jin, H. Kim, S. Park, H.W. Kim, S. Lee, C. Lee, Ceram. Int. 38, 6585–6590 (2012). https://doi.org/10.1016/j.ceramint.2012.05.043

    Article  CAS  Google Scholar 

  47. H.J. Kim, J.H. Lee, Sens. Actuators, B 192, 607–627 (2014). https://doi.org/10.1016/j.snb.2013.11.005

    Article  CAS  Google Scholar 

  48. T. Tong, J. Chen, D. Jin, J. Cheng, Mater. Lett. 197, 160–162 (2017). https://doi.org/10.1016/j.matlet.2017.03.091

    Article  CAS  Google Scholar 

  49. G. Dong, H. Fan, H. Tian, J. Fang, Q. Li, Rsc Adv. 5, 29618–29623 (2015). https://doi.org/10.1039/c5ra01869b

    Article  Google Scholar 

  50. H.X. Xu, J.H. Xu, J.L. Wei, Y.M. Zhang, Materials. 13, 3829 (2020). https://doi.org/10.3390/ma13173829

    Article  CAS  Google Scholar 

  51. Z. Ling, C. Leach, Sens. Actuators, B. 102, 102–106 (2004). https://doi.org/10.1016/j.snb.2004.02.017

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Outstanding Youth Foundation of Jiangsu Province of China under Grant No. BK20211548, the National Natural Science Foundation of China under Grant No. 51872254 and the National Key Research and Development Program of China under Grant No. 2017YFE0115900.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and analysis. Material preparation, data collection, and analysis were performed by ZZh and YL. The first draft of the manuscript was written by ZZh and YL. YL and MD edited the entire draft. CZ supervised the whole work and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chao Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Z., Li, Y., Luo, Y. et al. Facile synthesis of bismuth ferrite nanoparticles for ppm-level isopropanol gas sensor. J Mater Sci: Mater Electron 33, 18507–18521 (2022). https://doi.org/10.1007/s10854-022-08703-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08703-x

Navigation