Skip to main content
Log in

Exchange bias on polycrystalline BiFeO3/Co2Fe(Al0.5Si0.5) heterostructures

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Polycrystalline antiferromagnetic BiFeO3 (BFO) thin films were grown on Si/SiO2/Ti/Pt (111) substrates by pulsed laser deposition and then ferromagnetic films Co2Fe(Al0.5Si0.5) (CFAS) by magnetron sputtering. After fabrication, the films were vacuum-annealed under a 0.1-T magnetic field at different temperatures from 150 to 500 °C. The exchange bias field can be tuned by the annealing temperature for the heterostructures, and the electric domain size can be controlled by the crystal grain size. A large exchange bias of about 5 × 10−3 T is observed in one of the samples. It can be speculated that the crystal grain sizes are the key element in determining the exchange bias and coercivity of the films annealed at the temperature of higher than Neel temperature (T N) of BFO. Furthermore, it is possible to extend spin theories from single-crystal BFO system to polycrystalline BFO system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Heron JT, Schlom DG, Ramesh R. Electric field control of magnetism using BiFeO3-based heterostructures. Appl Phys Rev. 2014;1(2):021303.

    Article  Google Scholar 

  2. Yu T, Naganuma H, Wang WX, Ando Y, Han XF. Annealing temperature dependence of exchange bias in BiFeO3/CoFe bilayers. J Appl Phys. 2012;111(7):07D908.

    Article  Google Scholar 

  3. Bai F, Yu G, Wang YC, Jin LC, Zeng HZ, Tang XL, Zhong ZY, Zhang HW. Strong exchange bias with the (110)-oriented BiFeO3 films. Appl Phys Lett. 2012;101(9):092401.

    Article  Google Scholar 

  4. Heron JT, Bosse JL, He Q, Gao Y, Trassin M, Ye L, Clarkson JD, Wang C, Liu J, Salahuddin S, Ralph DC, Schlom DG, Iniguez J, Huey BD, Ramesh R. Deterministic switching of ferromagnetism at room temperature using an electric field. Nature. 2014;516(7531):370.

    Article  Google Scholar 

  5. Hauguel T, Pogossian SP, Dekadjevi DT, Spenato D, Jay JP, Indenbom MV, Youssef JB. Experimental evidence for exchange bias in polycrystalline BiFeO3/Ni81Fe19 thin films. J Appl Phys. 2011;110(7):073906.

    Article  Google Scholar 

  6. Chang HW, Yuan FT, Shih CW, Li WL, Chen PH, Wang CR, Chang WC, Jen SU. Exchange bias in sputtered FM/BiFeO3 thin films (FM=Fe and Co). J Appl Phys. 2012;111(7):07B105.

    Article  Google Scholar 

  7. Wang WH, Sukegawa H, Shan R, Furubayashi T, Inomata K. Preparation and characterization of highly L21-ordered full-Heusler alloy Co2FeAl0.5Si0.5 thin films for spintronics device applications. Appl Phys Lett. 2008;93(12):122506.

    Article  Google Scholar 

  8. Xu XG, Zhang DL, Wu Y, Zhang X, Li XQ, Yang HL, Jiang Y. Electronic structures of Heusler alloy Co2FeAl1−x Si x surface. Rare Met. 2012;31(2):107.

    Article  Google Scholar 

  9. Yu GH, Xu YL, Liu ZH, Qiu HM, Zhu ZY, Huang XP, Pan LQ. Recent progress in Heusler-type magnetic shape memory alloys. Rare Met. 2015;34(8):527.

    Article  Google Scholar 

  10. Neaton JB, Ederer C, Waghmare UV, Spaldin NA, Rabe KM. First-principles study of spontaneous polarization in multiferroic BiFeO3. Phys Rev B. 2005;71(1):014113.

    Article  Google Scholar 

  11. Martin LW, Chu YH, Holcomb MB, Huijben M, Yu P, Han SJ, Lee DK, Wang SX, Ramesh R. Nanoscale control of exchange bias with BiFeO3 thin films. Nano Lett. 2008;8(7):2050.

    Article  Google Scholar 

  12. Nogués J, Schuller IK. Echange bias. J Magn Magn Mater. 1999;192(2):203.

    Article  Google Scholar 

  13. Ren SB, Lu CJ, Liu JS, Shen HM, Wang YN. Size-related ferroelectric-domain-structure transition in a polycrystalline PbTiO3 thin film. Phys Rev B. 1996;54(20):14437.

    Article  Google Scholar 

  14. Stiles MD, McMichael RD. Model for exchange bias in polycrystalline ferromagnet-antiferromagnet bilayers. Phys Rev B. 1999;59(5):3722.

    Article  Google Scholar 

  15. Stiles MD, McMichael RD. Coercivity in exchange-bias bilayers. Phys Rev B. 2001;63(6):064405.

    Article  Google Scholar 

  16. Miller B, Dahlberg E. Use of the anisotropic magnetoresistance to measure exchange anisotropy in Co/CoO bilayers. Appl Phys Lett. 1996;69(25):3932.

    Article  Google Scholar 

  17. Nogues J, Sort J, Langlais V, Skumryev V, Suriñach S, Muñoz JS, Baró MD. Exchange bias in nanostructures. Phys Rep. 2005;422(3):65.

    Article  Google Scholar 

  18. Wu J, Park JS, Kim W, Arenholz E, Liberati M, Scholl A, Wu YZ, Hwang CY, Qiu ZQ. Direct measurement of rotatable and frozen CoO spins in exchange bias system of CoO/Fe/Ag(001). Phys Rev Lett. 2010;104(21):217204.

    Article  Google Scholar 

  19. Wu SM, Cybart SA, Yi D, Parker JM, Ramesh R, Dynes RC. Full electric control of exchange bias. Phys Rev Lett. 2013;110(6):067202.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Basic Research Program of China (Nos. 2012CB932702 and 2015CB921502) and the National Natural Science Foundation of China (Nos. 11174031, 51371024, 51325101, 51271020, and 51471029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Guang Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, SZ., Wu, Y., Yin, SQ. et al. Exchange bias on polycrystalline BiFeO3/Co2Fe(Al0.5Si0.5) heterostructures. Rare Met. 36, 32–36 (2017). https://doi.org/10.1007/s12598-016-0697-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0697-4

Keywords

Navigation