Skip to main content
Log in

Structural and magnetic studies of coprecipitated Me-spinel (Me = Co, Ni, Cu and Mg) ferrite nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The report attempts to study some spinel such as cobalt (Co–F), nickel (Ni–F), copper (Cu–F) and magnesium (Mg–F) nanoferrites, which are synthesized by coprecipitation route and annealed at 850 °C for 2 h. Powder X-ray diffraction patterns depict the formation of single cubic spinel structure (Fd-3m). Thereby, lattice parameter is ranging between 8.3420 and 8.4009 Å, while average crystallite size is found in 20–38 nm. Transmission electron and scanning electron microscopies exhibit that the nanoparticles are agglomerated and revealing mixture of spherical and irregular shapes. The fit of Co–F, Ni–F and Cu–F room 57Fe Mössbauer spectra was established with two sextets, which reflects that the Fe3+ is occupied two sub-lattices of spinel system. A weak percentage of quadruple doublet, 2%, was observed in both Ni–F and Cu–F spectra. Exceptionally, the Mg–F room 57Fe Mössbauer spectrum indicates broadening lines due to disordering of iron magnetic moments because of small nanoparticle size (20 nm), it was fitted with hyperfine field distribution, Mg–F spectrum was also collected at 6 K reflecting a ferrimagnetic ordering according to Néel’s theory. M(T) curves indicate that the blocking temperature is higher than 300 K, except the Mg–F sample shows a TB of ~226 K. Besides, the M(H) loops at 5 K exhibit a soft behavior and the magnetic parameters like Ms, Mr, µe, Mr/Ms ration, Hc and Ka have determined for the studied spinel ferrites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets reported and analyzed during the present work are available from the corresponding author.

References

  1. D.H.K. Reddy, Y.S. Yun, Coord. Chem. Rev. 315, 90 (2016). https://doi.org/10.1016/j.ccr.2016.01.012

    Article  CAS  Google Scholar 

  2. A. Nigam, S.J. Pawar, Ceram. Int. 46, 4058 (2020). https://doi.org/10.1016/j.ceramint.2019.10.243

    Article  CAS  Google Scholar 

  3. M. Amiri, M. Salavati-Niasari, A. Akbari, Adv. Colloid Interface Sci. 265, 29 (2019). https://doi.org/10.1016/j.cis.2019.01.003

    Article  CAS  Google Scholar 

  4. N. Alghamdi, J. Stroud, M. Przybylski, J. Żukrowski, A.C. Hernandez, J.M. Brown, J.H. Hankiewicz, Z. Celinski, J. Magn. Magn. Mater. 497, 165981 (2019). https://doi.org/10.1016/j.jmmm.2019.165981

    Article  CAS  Google Scholar 

  5. A. Manohar, D.D. Geleta, C. Krishnamoorthi, J. Lee, Ceram. Int. 46, 28035 (2020). https://doi.org/10.1016/j.ceramint.2020.07.298

    Article  CAS  Google Scholar 

  6. S.R. Patade, D.D. Andhare, S.B. Somvanshi, S.A. Jadhav, M.V. Khedkar, K.M. Jadhav, Ceram. Int. 46, 1 (2020). https://doi.org/10.1016/j.ceramint.2020.07.029

    Article  CAS  Google Scholar 

  7. B. Abraime, K. El-Maalam, L. Fkhar, A. Mahmoud, F. Boschini, M. Ait-Tamerd, A. Benyoussef, M. Hamedoun, E.K. Hlil, M. Ait-Ali, A. El-Kenz, O. Mounkachi, J. Magn. Magn. Mater. 500, 166416 (2019). https://doi.org/10.1016/j.jmmm.2020.166416

    Article  CAS  Google Scholar 

  8. I.C. Sathisha, K. Manjunatha, A. Bajorek, B.R. Babu, B. Chethan, T.R.K. Reddy, Y.T. Ravikiran, V.J. Angadi, J. Alloys Compd. 848, 156577 (2020). https://doi.org/10.1016/j.jallcom.2020.156577

    Article  CAS  Google Scholar 

  9. T.N. Pham, T.Q. Huy, A.T. Le, RSC Adv. 10, 31622 (2020). https://doi.org/10.1039/d0ra05133k

    Article  CAS  Google Scholar 

  10. M. Kamran, M.A. Ur-Rehman, J. Alloys Compd. 822, 153583 (2020). https://doi.org/10.1016/j.jallcom.2019.153583

    Article  CAS  Google Scholar 

  11. Z. Cvejić, E. Đurđić, G.I. Ivandekić, B. Bajac, P. Postolache, L. Mitoseriu, V.V. Srdić, S. Rakić, J. Alloys Compd. 649, 1231 (2015). https://doi.org/10.1016/j.jallcom.2015.07.238

    Article  CAS  Google Scholar 

  12. A. Hussain, T. Abbas, S.B. Niazi, Ceram. Int. 39, 1221 (2013). https://doi.org/10.1016/j.ceramint.2012.07.049

    Article  CAS  Google Scholar 

  13. C. Liu, B. Zou, A.J. Rondinone, Z.J. Zhang, J. Am. Chem. Soc. 122, 6263 (2000). https://doi.org/10.1021/ja000784g

    Article  CAS  Google Scholar 

  14. Y. Qu, H. Yang, N. Yang, Y. Fan, H. Zhu, G. Zou, Mater. Lett. 60, 3548 (2006). https://doi.org/10.1016/j.matlet.2006.03.055

    Article  CAS  Google Scholar 

  15. Q. Song, Z.J. Zhang, J. Am. Chem. Soc. 126, 6164 (2004). https://doi.org/10.1021/ja049931r

    Article  CAS  Google Scholar 

  16. M.A. Cobos, P. de la Presa, I. Llorente, A. García-Escorial, A. Hernando, J.A. Jiménez, J. Alloys Compd. 849, 156353 (2020). https://doi.org/10.1016/j.jallcom.2020.156353

    Article  CAS  Google Scholar 

  17. M. Ounacer, M. Sajieddine, A. Essoumhi, in Proceeding in IEEE 6th International Conference on Optimization and Applications, (2020), p. 1. https://doi.org/10.1109/ICOA49421.2020.9094518

  18. C.N. Anumol, M. Chithra, M. Govindaraj Shalini, S.C. Sahoo, Effect of annealing on structural and magnetic properties of NiFe2O4/ZnFe2O4 nanocomposites. J. Magn. Magn. Mater. 469, 81 (2019)

    Article  CAS  Google Scholar 

  19. M. Ounacer, B. Rabi, A. Essoumhi, M. Sajieddine, B.F.O. Costa, M. Emo, A. Razouk, M. Sahlaoui, J. Alloys Compd. 854, 156968 (2020). https://doi.org/10.1016/j.jallcom.2020.156968

    Article  CAS  Google Scholar 

  20. M.M. Althubayti, M. Hjiri, N.H. Alonizan, O.M. Lemine, M.S. Aida, J. Mater. Sci. Mater. Electron. 31, 8194 (2020). https://doi.org/10.1007/s10854-020-03354-2

    Article  CAS  Google Scholar 

  21. F. Moravvej-Farshi, M. Amishi, K.A. Nekouee, J. Mater. Sci. Mater. Electron. 31, 13610 (2020). https://doi.org/10.1007/s10854-020-03917-3

    Article  CAS  Google Scholar 

  22. S. Packiaraj, M. Jeyaraj, K. Chandarasekaran, J.M. Rawson, S. Govindarajan, J. Mater. Sci. Mater. Electron. 30, 18866 (2019). https://doi.org/10.1007/s10854-019-02243-7

    Article  CAS  Google Scholar 

  23. A. Omri, E. Dhahri, B.F.O. Costa, M.A. Valente, J. Magn. Magn. Mater. 499, 166243 (2020). https://doi.org/10.1016/j.jmmm.2019.166243

    Article  CAS  Google Scholar 

  24. S.H. Yu, Q.L. Wang, Y. Chen, Y. Wang, J.H. Wang, Mater. Lett. 278, 128431 (2020). https://doi.org/10.1016/j.matlet.2020.128431

    Article  CAS  Google Scholar 

  25. X. Zhang, Z. Chen, C. Wu, J. Zhang, F. Wang, Chem. Phys. Lett. 732, 136647 (2019). https://doi.org/10.1016/j.cplett.2019.136647

    Article  CAS  Google Scholar 

  26. M. Ounacer, A. Essoumhi, M. Sajieddine, A. Razouk, B.F.O. Costa, S.M. Dubiel, M. Sahlaoui, J. Supercond. Nov. Magn. 33, 3249 (2020). https://doi.org/10.1007/s10948-020-05586-z

    Article  CAS  Google Scholar 

  27. R.A. Brand, NORMOS Programs, Internal Report, in Angewandte Physik, Universität Duisburg, 1987.

  28. D.D. Andhare, S.R. Patade, J.S. Kounsalye, K.M. Jadhav, Phys. B Condens. Matter 583, 412051 (2020). https://doi.org/10.1016/j.physb.2020.412051

    Article  CAS  Google Scholar 

  29. M. Ounacer, A. Essoumhi, M. Sajieddine, A. Razouk, A. Fnidiki, F. Richomme, J. Juraszek, S.M. Dubiel, M. Sahlaoui, J. Phys. Chem. Solids 148, 109687 (2021). https://doi.org/10.1016/j.jpcs.2020.109687

    Article  CAS  Google Scholar 

  30. R.D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976)

    Article  Google Scholar 

  31. J. Jacob, M. Abdul-Khadar, J. Magn. Magn. Mater. 322, 614 (2010). https://doi.org/10.1016/j.jmmm.2009.10.025

    Article  CAS  Google Scholar 

  32. D. Peddis, N. Yaacoub, M. Ferretti, A. Martinelli, G. Piccaluga, A. Musinu, C. Cannas, G. Navarra, J.M. Greneche, D. Fiorani, J. Phys. Condens. Matter 23, 426004 (2011). https://doi.org/10.1088/0953-8984/23/42/426004

    Article  CAS  Google Scholar 

  33. L. Ajroudi, N. Mliki, L. Bessais, V. Madigou, S. Villain, C. Leroux, Mater. Res. Bull. 59, 49 (2014). https://doi.org/10.1016/j.materresbull.2014.06.029

    Article  CAS  Google Scholar 

  34. J. Sanchez-Marcos, E. Mazario, J.A. Rodriguez-Velamazan, E. Salas, P. Herrasti, N. Menendez, J. Alloys Compd. 739, 909 (2018). https://doi.org/10.1016/j.jallcom.2017.12.342

    Article  CAS  Google Scholar 

  35. E.V. Gopalan, I.A. Al-Omari, D.S. Kumar, Y. Yoshida, P.A. Joy, M.R. Anantharaman, Appl. Phys. A 99, 497 (2010). https://doi.org/10.1007/s00339-010-5573-8

    Article  CAS  Google Scholar 

  36. L. Kumar, P. Kumar, S.K. Srivastava, M. Kar, J. Supercond. Nov. Magn. 27, 1677 (2014). https://doi.org/10.1007/s10948-014-2519-y

    Article  CAS  Google Scholar 

  37. S. Joshi, M. Kumar, S. Chhoker, G. Srivastava, M. Jewariya, V.N. Singh, J. Mol. Struct. 1076, 55 (2014). https://doi.org/10.1016/j.molstruc.2014.07.048

    Article  CAS  Google Scholar 

  38. M.A. Almessiere, Y. Slimani, M. Sertkol, M. Nawaz, A. Sadaqat, A. Baykal, I. Ercan, B. Ozçelik, Nanomaterials 9, 1 (2019). https://doi.org/10.3390/nano9030430

    Article  CAS  Google Scholar 

  39. S.F. Mansour, O.M. Hemeda, S.I. El-dek, B.I. Salem, J. Magn. Magn. Mater. 420, 7 (2016). https://doi.org/10.1016/j.jmmm.2016.06.082

    Article  CAS  Google Scholar 

  40. S.T. Alone, S.E. Shirsath, R.H. Kadam, K.M. Jadhav, J. Alloys Compd. 509, 5055 (2011). https://doi.org/10.1016/j.jallcom.2011.02.006

    Article  CAS  Google Scholar 

  41. R.S. Yadav, J. Havlica, J. Masilko, L. Kalina, J. Wasserbauer, M. Hajdúchová, V. Enev, I. Kuřitka, Z. Kožáková, J. Magn. Magn. Mater. 399, 109 (2016). https://doi.org/10.1016/j.jmmm.2015.09.055

    Article  CAS  Google Scholar 

  42. H. Taati, O. Mirzaee, H. Koohestani, J. Alloys Compd. 822, 153635 (2020). https://doi.org/10.1016/j.jallcom.2019.153635

    Article  CAS  Google Scholar 

  43. P. Thandapani, M.R. Viswanathan, M. Vinícius-Araújo, A.F. Bakuzis, F. Béron, A. Thirumurugan, J.C. Denardin, J.A. Jiménez, A. Akbari-Fakhrabadi, J. Am. Ceram. Soc. 103, 5086 (2020). https://doi.org/10.1111/jace.17175

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

MO synthesized MeFe2O4 samples, carried out the experiment, analyzed the data, calculated the Mössbauer spectra, designed the figures and drafted the manuscript; AE contributed to sample preparation and to the final version of the manuscript; BR contributed to sample preparation and to the final version of the manuscript; EA carried out the experiment and contributed to the interpretation of the results; AE established the thermal analysis, TG–DTA, of as-prepared samples and contributed to the interpretation of the results; BFOC carried out the VSM measurements at low temperature and SEM observations; SMD characterized the MgFe2O4 with 57Fe Mössbauer spectroscopy at 6 K; AF, FR and JJ performed the SQUID measurements at low temperature; MS supervised the findings of this work and provided critical feedback and helped shape of the research; All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Mohamed Ounacer.

Ethics declarations

Conflict of interest

No conflict of interest exists.

Research involving human and animal rights

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ounacer, M., El Boubekri, A., Rabi, B. et al. Structural and magnetic studies of coprecipitated Me-spinel (Me = Co, Ni, Cu and Mg) ferrite nanoparticles. J Mater Sci: Mater Electron 33, 16655–16668 (2022). https://doi.org/10.1007/s10854-022-08562-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08562-6

Navigation