Skip to main content
Log in

Photoelectrochemical properties and photocatalytic degradation of methyl orange dye by different ZnO nanostructures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, three types of ZnO nanostructures were synthesized by a one-step facile hydrothermal method with the aid of urea as the surfactant. Synthesized ZnO nanostructures were characterized by different methods including XRD, FT-IR, FE-SEM, TEM and UV-DRS. The catalytic behavior of ZnO nanostructures was studied against methyl orange dye degradation under the illumination of a halogen lamp. The mono-dumbbell, modified dumbbell, and floral-like ZnO nanostructure with a bandgap of 3.18 eV, 3.15 eV, and 3.11 eV were obtained using different concentrations of urea which show the methyl orange degradation efficacy of 59%, 87%, and 92% in 30 min, respectively. The possible mechanism for photocatalytic activity was also discussed. The obtained results revealed that ZnO nanostructures with different degradation efficacy can be obtained by the hydrothermal method with the aid of urea as the surfactant and it can be a potential approach to prepare photocatalyst toward environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data are available upon request.

References

  1. V. Arun, S. Prabhu, A. Priyadharsan, P. Maadeswaran, S. Sohila, R. Ramesh, A.S. Kumar, Facile, low cost synthesis of cauliflower-shaped ZnO with MWCNT/rGO nanocomposites and their photocatalytic activity. J. Mater. Sci. Mater. Electron. (2021). https://doi.org/10.1007/s10854-021-06129-5

    Article  Google Scholar 

  2. H.E. Emam, H.B. Ahmed, E. Gomaa, M.H. Helal, R.M. Abdelhameed, Doping of silver vanadate and silver tungstate nanoparticles for enhancement the photocatalytic activity of MIL-125-NH2 in dye degradation. J. Photochem. Photobiol. A Chem. 383, 111986 (2019). https://doi.org/10.1016/j.jphotochem.2019.111986

    Article  CAS  Google Scholar 

  3. Z. Heidari, R. Alizadeh, A. Ebadi, N. Oturan, M.A. Oturan, Efficient photocatalytic degradation of furosemide by a novel sonoprecipited ZnO over ion exchanged clinoptilolite nanorods. Sep. Purif. Technol. 242, 116800 (2020). https://doi.org/10.1016/j.seppur.2020.116800

    Article  CAS  Google Scholar 

  4. N. Le Minh Tri, D.Q. Trung, D. Van Thuan, N.T. Dieu Cam, T. Al Tahtamouni, T.D. Pham, D.S. Duc, M.H. Thanh Tung, H. Van Ha, N.H. Anh Thu, H.T. Trang, The advanced photocatalytic performance of V doped CuWO4 for water splitting to produce hydrogen. Int. J. Hydrog. Energy 45, 18186–18194 (2020). https://doi.org/10.1016/j.ijhydene.2019.06.132

    Article  CAS  Google Scholar 

  5. T. Montini, V. Gombac, A. Hameed, L. Felisari, G. Adami, P. Fornasiero, Synthesis, characterization and photocatalytic performance of transition metal tungstates. Chem. Phys. Lett. 498, 113–119 (2010). https://doi.org/10.1016/j.cplett.2010.08.026

    Article  CAS  Google Scholar 

  6. K. Flores, C. Valdes, D. Ramirez, T.M. Eubanks, J. Lopez, C. Hernandez, M. Alcoutlabi, J.G. Parsons, The effect of hybrid zinc oxide/graphene oxide (ZnO/GO) nano-catalysts on the photocatalytic degradation of simazine. Chemosphere 259, 127414 (2020). https://doi.org/10.1016/j.chemosphere.2020.127414

    Article  CAS  Google Scholar 

  7. X. Chen, X. Wang, F. Liu, X. Song, H. Cui, Fabrication of NiO–ZnO-modified g-C3N4 hierarchical composites for high-performance supercapacitors. Vacuum 178, 3–10 (2020). https://doi.org/10.1016/j.vacuum.2020.109453

    Article  CAS  Google Scholar 

  8. E. Dhandapani, S. Prabhu, N. Duraisamy, Bifunctional copper zinc bimetallic tungstate nanoparticles decorated reduced graphene oxide and supercapacitor application. J. Mater. Sci.: Mater Electron. (2021). https://doi.org/10.1007/s10854-021-06339-x

    Article  Google Scholar 

  9. P. Arumugam, P. Sengodan, N. Duraisamy, R. Rajendran, V. Vasudevan, An effective strategy to enhance the photocatalytic performance by forming NiS/rGO heterojunction nanocomposites. Ionics (Kiel). 26, 4201–4212 (2020). https://doi.org/10.1007/s11581-020-03564-y

    Article  CAS  Google Scholar 

  10. A. Vanamudan, M. Sadhu, P.S. Pamidimukkala, Nanostructured zirconium tungstate and its bionanocomposite with chitosan: wet peroxide photocatalytic degradation of dyes. J. Taiwan Inst. Chem. Eng. 85, 74–82 (2018). https://doi.org/10.1016/j.jtice.2017.12.018

    Article  CAS  Google Scholar 

  11. B. Liu, H.C. Zeng, Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J. Am. Chem. Soc. 125, 4430–4431 (2003). https://doi.org/10.1021/ja0299452

    Article  CAS  Google Scholar 

  12. P.R. Deshmukh, Y. Sohn, W. Gyu, Chemical synthesis of ZnO nanorods: investigations of electrochemical performance and photo-electrochemical water splitting applications. J. Alloys Compd. 711, 573–580 (2017). https://doi.org/10.1016/j.jallcom.2017.04.030

    Article  CAS  Google Scholar 

  13. S.K.N. Ayudhya, P. Tonto, O. Mekasuwandumrong, V. Pavarajarn, P. Praserthdam, Solvothermal synthesis of ZnO with various aspect ratios using organic solvents. Cryst. Growth Des. 6, 2446–2450 (2006). https://doi.org/10.1021/cg050345z

    Article  CAS  Google Scholar 

  14. S. Jiao, L. Xu, K. Hu, J. Li, S. Gao, D. Xu, Morphological control of α-FeOOH nanostructures by electrodeposition. J. Phys. Chem. C 114, 269–273 (2010). https://doi.org/10.1021/jp909072m

    Article  CAS  Google Scholar 

  15. J. Huang, Y. Yang, L. Yang, Y. Bu, T. Xia, S. Gu, H. Yang, D. Ye, W. Xu, Fabrication of multifunctional silk fabrics via one step in-situ synthesis of ZnO. Mater. Lett. 237, 149–151 (2019). https://doi.org/10.1016/j.matlet.2018.11.035

    Article  CAS  Google Scholar 

  16. X. Qin, D. Shi, B. Guo, C. Fu, J. Zhang, Q. Xie, X. Shi, Anion-regulated synthesis of ZnO 1D necklace-like nanostructures with high photocatalytic activity. Nanoscale Res. Lett. (2020). https://doi.org/10.1186/s11671-020-03435-5

    Article  Google Scholar 

  17. Y. Lai, M. Meng, Y. Yu, X. Wang, T. Ding, Photoluminescence and photocatalysis of the flower-like nano-ZnO photocatalysts prepared by a facile hydrothermal method with or without ultrasonic assistance. Appl. Catal. B Environ. 105, 335–345 (2011). https://doi.org/10.1016/j.apcatb.2011.04.028

    Article  CAS  Google Scholar 

  18. Y. Liang, N. Guo, L. Li, R. Li, G. Ji, S. Gan, Fabrication of porous 3D flower-like Ag/ZnO heterostructure composites with enhanced photocatalytic performance. Appl. Surf. Sci. 332, 32–39 (2015). https://doi.org/10.1016/j.apsusc.2015.01.116

    Article  CAS  Google Scholar 

  19. H. Hu, X. Huang, C. Deng, X. Chen, Y. Qian, Hydrothermal synthesis of ZnO nanowires and nanobelts on a large scale. Mater. Chem. Phys. 106, 58–62 (2007). https://doi.org/10.1016/j.matchemphys.2007.05.016

    Article  CAS  Google Scholar 

  20. C.L. Kuo, T.J. Kuo, M.H. Huang, Hydrothermal synthesis of ZnO microspheres and hexagonal microrods with sheetlike and platelike nanostructures. J. Phys. Chem. B 109, 20115–20121 (2005). https://doi.org/10.1021/jp0528919

    Article  CAS  Google Scholar 

  21. S. Prabhu, S. Megala, S. Harish, M. Navaneethan, P. Maadeswaran, S. Sohila, R. Ramesh, Enhanced photocatalytic activities of ZnO dumbbell/reduced graphene oxide nanocomposites for degradation of organic pollutants via efficient charge separation pathway. Appl. Surf. Sci. 487, 1279–1288 (2019). https://doi.org/10.1016/j.apsusc.2019.05.086

    Article  CAS  Google Scholar 

  22. S. Prabhu, M. Pudukudy, S. Harish, M. Navaneethan, S. Sohila, K. Murugesan, R. Ramesh, Facile construction of djembe-like ZnO and its composite with g-C3N4 as a visible-light-driven heterojunction photocatalyst for the degradation of organic dyes. Mater. Sci. Semicond. Process 106, 104754 (2020). https://doi.org/10.1016/j.mssp.2019.104754

    Article  CAS  Google Scholar 

  23. Y.I. Choi, H.J. Jung, W.G. Shin, Y. Sohn, Band gap-engineered ZnO and Ag/ZnO by ball-milling method and their photocatalytic and Fenton-like photocatalytic activities. Appl. Surf. Sci. 356, 615–625 (2015). https://doi.org/10.1016/j.apsusc.2015.08.118

    Article  CAS  Google Scholar 

  24. C. Abinaya, M. Marikkannan, M. Manikandan, J. Mayandi, P. Suresh, V. Shanmugaiah, C. Ekstrum, J.M. Pearce, Structural and optical characterization and efficacy of hydrothermal synthesized Cu and Ag doped zinc oxide nanoplate bactericides. Mater. Chem. Phys. 184, 172–182 (2016). https://doi.org/10.1016/j.matchemphys.2016.09.039

    Article  CAS  Google Scholar 

  25. W. Muhammad, N. Ullah, M. Haroon, B.H. Abbasi, Optical, morphological and biological analysis of zinc oxide nanoparticles (ZnO NPs) using: Papaver somniferum L. RSC Adv. 9, 29541–29548 (2019). https://doi.org/10.1039/c9ra04424h

    Article  CAS  Google Scholar 

  26. P. Norouzzadeh, K. Mabhouti, M.M. Golzan, R. Naderali, Comparative study on dielectric and structural properties of undoped, Mn-doped, and Ni-doped ZnO nanoparticles by impedance spectroscopy analysis. J. Mater. Sci. Mater. Electron. 31, 7335–7347 (2020). https://doi.org/10.1007/s10854-019-02517-0

    Article  CAS  Google Scholar 

  27. A. Umar, R. Kumar, G. Kumar, H. Algarni, S.H. Kim, Effect of annealing temperature on the properties and photocatalytic efficiencies of ZnO nanoparticles. J. Alloys Compd. 648, 46–52 (2015). https://doi.org/10.1016/j.jallcom.2015.04.236

    Article  CAS  Google Scholar 

  28. S. Mahalakshmi, N. Hema, P.P. Vijaya, In vitro biocompatibility and antimicrobial activities of zinc oxide nanoparticles (ZnO NPs) prepared by chemical and green synthetic route—a comparative study. Bionanoscience 10, 112–121 (2020). https://doi.org/10.1007/s12668-019-00698-w

    Article  Google Scholar 

  29. K. Steffy, G. Shanthi, A.S. Maroky, S. Selvakumar, Synthesis and characterization of ZnO phytonanocomposite using Strychnos nux-vomica L. (Loganiaceae) and antimicrobial activity against multidrug-resistant bacterial strains from diabetic foot ulcer. J. Adv. Res. 9, 69–77 (2018). https://doi.org/10.1016/j.jare.2017.11.001

    Article  CAS  Google Scholar 

  30. G. Nagaraju, Udayabhanu, Shivaraj, S.A. Prashanth, M. Shastri, K.V. Yathish, C. Anupama, D. Rangappa, Electrochemical heavy metal detection, photocatalytic, photoluminescence, biodiesel production and antibacterial activities of Ag–ZnO nanomaterial. Mater. Res. Bull. 94, 54–63 (2017). https://doi.org/10.1016/j.materresbull.2017.05.043

    Article  CAS  Google Scholar 

  31. R. Jagtap, S. Sakate, S. Pardeshi, Selective N-acetylation with concurrent S-oxidation of o-amino thiol at ambient conditions over Ce doped ZnO composite nanocrystallites. Mol. Catal. 450, 19–28 (2018). https://doi.org/10.1016/j.mcat.2018.03.007

    Article  CAS  Google Scholar 

  32. N. Zhang, S. Xie, B. Weng, Y.J. Xu, Vertically aligned ZnO-Au@CdS core-shell nanorod arrays as an all-solid-state vectorial Z-scheme system for photocatalytic application. J. Mater. Chem. A 4, 18804–18814 (2016). https://doi.org/10.1039/C6TA07845A

    Article  CAS  Google Scholar 

  33. Y. Lu, Y. Lin, D. Wang, L. Wang, T. Xie, T. Jiang, A high performance cobalt-doped ZnO visible light photocatalyst and its photogenerated charge transfer properties. Nano Res. 4, 1144–1152 (2011). https://doi.org/10.1007/s12274-011-0163-4

    Article  CAS  Google Scholar 

  34. K.S. Divya, M.M. Xavier, P.V. Vandana, V.N. Reethu, S. Mathew, A quaternary TiO2/ZnO/RGO/Ag nanocomposite with enhanced visible light photocatalytic performance. New J. Chem. 41, 6445–6454 (2017). https://doi.org/10.1039/c7nj00495h

    Article  CAS  Google Scholar 

  35. C. Yu, Q. Yu, C. Gao, H. Yang, B. Liu, G. Peng, Y. Han, D. Zhang, X. Cui, C. Liu, Y. Wang, B. Wu, C. He, X. Huang, G. Zou, Phase transformation and resistivity of dumbbell-like ZnO microcrystals under high pressure. J. Appl. Phys. (2008). https://doi.org/10.1063/1.2931039

    Article  Google Scholar 

  36. Y. Liu, H. Lv, S. Li, G. Xi, X. Xing, Synthesis and characterization of ZnO with hexagonal dumbbell-like bipods microstructures. Adv. Powder Technol. 22, 784–788 (2011). https://doi.org/10.1016/j.apt.2011.05.011

    Article  CAS  Google Scholar 

  37. Z. Hou, Y. Wang, L. Shen, H. Guo, G. Wang, Y. Li, S. Zhou, Q. Zhang, Q. Jiang, Synthesis of dumbbell-like ZnO microcrystals via a simple solution route. Nanoscale Res. Lett. 7, 1–7 (2012). https://doi.org/10.1186/1556-276X-7-507

    Article  Google Scholar 

  38. Y. Sun, L. Wang, X. Yu, K. Chen, Facile synthesis of flower-like 3D ZnO superstructures via solution route. CrystEngComm 14, 3199–3204 (2012). https://doi.org/10.1039/c2ce06335b

    Article  CAS  Google Scholar 

  39. J. Qiu, B. Weng, L. Zhao, C. Chang, Z. Shi, X. Li, H.K. Kim, Y.H. Hwang, Synthesis and characterization of flower-like bundles of ZnO nanosheets by a surfactant-free hydrothermal process. J. Nanomater. (2014). https://doi.org/10.1155/2014/281461

    Article  Google Scholar 

  40. P. Sengunthar, K.H. Bhavsar, C. Balasubramanian, U.S. Joshi, Physical properties and enhanced photocatalytic activity of ZnO-rGO nanocomposites. Appl. Phys. A Mater. Sci. Process. 126, 1–9 (2020). https://doi.org/10.1007/s00339-020-03753-6

    Article  CAS  Google Scholar 

  41. K.N. Abbas, N. Bidin, Morphological driven photocatalytic activity of ZnO nanostructures. Appl. Surf. Sci. 394, 498–508 (2017). https://doi.org/10.1016/j.apsusc.2016.10.080

    Article  CAS  Google Scholar 

  42. S. Li, Q. Lin, X. Liu, L. Yang, J. Ding, F. Dong, Y. Li, M. Irfan, P. Zhang, Fast photocatalytic degradation of dyes using low-power laser-fabricated Cu2O-Cu nanocomposites. RSC Adv. 8, 20277–20286 (2018). https://doi.org/10.1039/c8ra03117g

    Article  CAS  Google Scholar 

  43. Q. Xie, H. Guo, X. Zhang, A. Lu, D. Zeng, Y. Chen, D.L. Peng, A facile approach to fabrication of well-dispersed NiO-ZnO composite hollow microspheres. RSC Adv. 3, 24430–24439 (2013). https://doi.org/10.1039/c3ra43678k

    Article  CAS  Google Scholar 

  44. M.C. Uribe-López, M.C. Hidalgo-López, R. López-González, D.M. Frías-Márquez, G. Núñez-Nogueira, D. Hernández-Castillo, M.A. Alvarez-Lemus, Photocatalytic activity of ZnO nanoparticles and the role of the synthesis method on their physical and chemical properties. J. Photochem. Photobiol. A Chem. (2021). https://doi.org/10.1016/j.jphotochem.2020.112866

    Article  Google Scholar 

  45. G. Madhumitha, J. Fowsiya, N. Gupta, A. Kumar, M. Singh, Green synthesis, characterization and antifungal and photocatalytic activity of Pithecellobium dulce peel–mediated ZnO nanoparticles. J. Phys. Chem. Solids 127, 43–51 (2019). https://doi.org/10.1016/j.jpcs.2018.12.005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors Dr. P. Maadeswaran acknowledges the University Grants Commission (UGC), New Delhi, Government of India for support under UGC-BSR Start-Up Grant (No. 30-361/2017 (BSR)). The author from KKU would like to express his gratitude to the Deanship of Scientific Research at King Khalid University, Abha, Saudi Arabia, for funding this work through Research Groups Program under Grant No. R.G.P.2/160/42.

Author information

Authors and Affiliations

Authors

Contributions

CJ: Conceptualization, Methodology, Writing and investigation, SSR: Methodology, JD: Formal analysis and investigation, SP: Writing—original draft preparation, RR and GS: Writing—review and editing, PM: Resources, SSR and MS: Supervision.

Corresponding authors

Correspondence to C. Jayakrishnan or S. R. Sheeja.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest/ Competing Interests.

Research involving human and animal rights

This article does not contain any studies involving human or animal participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayakrishnan, C., Sheeja, S.R., Duraimurugan, J. et al. Photoelectrochemical properties and photocatalytic degradation of methyl orange dye by different ZnO nanostructures. J Mater Sci: Mater Electron 33, 9732–9742 (2022). https://doi.org/10.1007/s10854-022-07801-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07801-0

Navigation