Skip to main content

Advertisement

Log in

ZnO nanostructures for photocatalytic degradation of methylene blue: effect of different anodization parameters

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

In this paper, the photocatalytic activity of ZnO nanostructures formed by anodization method with different parameters was investigated. The synthesis of ZnO nanostructures with different morphology by varying anodic oxidation parameters containing electrolytes, molarity, voltage, and duration was analyzed. ZnO nanostructures were prepared through different parameters consisting of six samples. The produced ZnO nanostructures were investigated by using X-ray diffraction, scanning electron microscopy, diffuse reflectance spectroscopy, and UV–Vis spectrophotometer. It was found that the morphology of ZnO structures was formed as nanorods, needle-like, flower-like, heterogeneous, and homogeneous of mixed structures. ZnO nanostructures were identified by matching X-Ray diffraction peaks due to the international center for diffraction data database. Experiments on photocatalytic degradation of methylene blue demonstrated that the photocatalytic activity of ZnO samples. The best photocatalytic performance was observed by the sample anodized for an hour in 0.05 M of KHCO3 electrolytes with 40 V electrical potential. It was observed that the removal of methylene blue increased 3 times (photocatalytic degradation efficiency ~ 31% for methylene blue vs ~ 90% by the best sample) thanks to the obtained ZnO nanostructured photocatalysts. The results showed that an increment of the voltage has a significant effect on the photocatalytic activity of ZnO while keeping other parameters including molarity, time, and electrolyte type constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Xiao, Y. Xie, H. Cao, Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation. Chemosphere 121, 1–17 (2015). https://doi.org/10.1016/j.chemosphere.2014.10.072

    Article  CAS  Google Scholar 

  2. C.C. Wang, J.R. Li, X.L. Lv, Y.Q. Zhang, G. Guo, Photocatalytic organic pollutants degradation in metal-organic frameworks. Energy Environ. Sci. 7, 2831–2867 (2014). https://doi.org/10.1039/c4ee01299b

    Article  CAS  Google Scholar 

  3. I. Medina-Ramírez, J.L. Liu, A. Hernández-Ramírez, C. Romo-Bernal, G. PedrozaHerrera, J. Jáuregui-Rincón, M.A. Gracia-Pinilla, Synthesis, characterization, photocatalytic evaluation, and toxicity studies of TiO2–Fe3+ nanocatalyst. J. Mater. Sci. 49, 5309–5323 (2014). https://doi.org/10.1007/s10853-014-8234-z

    Article  CAS  Google Scholar 

  4. R.R. Chen, Q.F. Ren, Y.X. Liu, Y. Ding, H.T. Zhu, C.Y. Xiong, W.C. Oh, Synthesis of g-C3N4/diatomite/MnO2 composites and their enhanced photo-catalytic activity driven by visible light. J. Korean Ceram. Soc. 58(5), 548–558 (2021)

    CAS  Google Scholar 

  5. K. Qi, B. Cheng, J. Yu, W. Ho, Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J. Alloy. Compd. 727, 792–820 (2017). https://doi.org/10.1016/j.jallcom.2017.08.142

    Article  CAS  Google Scholar 

  6. M. Cao, F. Wang, J. Zhu, X. Zhang, Y. Qin, L. Wang, Mater. Lett. 192, 1–4 (2017)

    CAS  Google Scholar 

  7. X.L. Wang, C.Y. Luan, Q. Shao, A. Pruna, C.W. Leung, R. Lortz, J.A. Zapien, A. Ruotolo, Effect of the magnetic order on the room-temperature band-gap of Mn-doped ZnO thin films. Appl. Phys. Lett. 102, 102112 (2013)

    Google Scholar 

  8. V.K. Gupta, Suhas, Application of low-cost adsorbents for dye removal—a review. J. Environ. Manage. 90, 2313–2342 (2009)

    CAS  Google Scholar 

  9. J. You, Y. Guo, R. Guo, X. Liu, A review of visible light-active photocatalysts for water disinfection: features and prospects. Chem. Eng. J. 373, 624–641 (2019)

    CAS  Google Scholar 

  10. J. Singh, S. Palsaniya, R.K. Soni, Mesoporous dark brown TiO2 spheres for pollutant removal and energy storage applications. Appl. Surf. Sci. 527, 146796 (2020)

    CAS  Google Scholar 

  11. C. Xu, P. Ravi Anusuyadevi, C. Aymonier, R. Luque, S. Marre, Nanostructured materials for photocatalysis. Chem. Soc. Rev. 48, 3868–3902 (2019)

    CAS  Google Scholar 

  12. D. Schultz, T. Yoon, Solar synthesis: prospects in visible light photocatalysis. Science 48, 1239176 (2019)

    Google Scholar 

  13. H. Hu, Y. Lin, Y.H. Hu, Synthesis, structures and applications of single component core-shell structured TiO2: a review. Chem. Eng. J. 375, 122029 (2019)

    CAS  Google Scholar 

  14. A. Kumar, K. Kumar, V. Krishnan, Sunlight driven methanol oxidation by anisotropic plasmonic Au nanostructures supported on amorphous titania: influence of morphology on photocatalytic activity. Mater. Lett. 245, 45–48 (2019)

    CAS  Google Scholar 

  15. A. Noypha, Y. Areerob, S. Chanthai, P. Nuengmatcha, Fe2O3-graphene anchored Ag nanocomposite catalyst for enhanced sonocatalytic degradation of methylene blue. J. Korean Ceram. Soc. 58(3), 297–306 (2021)

    CAS  Google Scholar 

  16. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995)

    CAS  Google Scholar 

  17. T.Q. Trang, T.B. Phan, N.D. Nam, V.T.H. Thu, In situ charge transfer at the Ag@ZnO photoelectrochemical interface toward the high photocatalytic performance of H2 evolution and RhB degradation. ACS Appl. Mater. Interfaces 12, 12195–12206 (2020)

    CAS  Google Scholar 

  18. A. Kumar, K.L. Reddy, S. Kumar, A. Kumar, V. Sharma, V. Krishnan, Rational design and development of lanthanide-doped NaYF4@CdS-Au-RGO as quaternary plasmonic photocatalysts for harnessing visible-near-infrared broadband spectrum. ACS Appl. Mater. Interfaces 10, 15565–15581 (2018)

    CAS  Google Scholar 

  19. J. Singh, A.K. Manna, R.K. Soni, Bifunctional Au-TiO2 thin films with enhanced photocatalytic activity and SERS based multiplexed detection of organic pollutant. J. Mater. Sci. Mater. El. 30, 16478–16493 (2019)

    CAS  Google Scholar 

  20. J. Singh, R.K. Soni, Controlled synthesis of CuO decorated defect enriched ZnO nanoflakes for improved sunlight-induced photocatalytic degradation of organic pollutants. Appl. Surf. Sci. 521, 146420 (2020)

    CAS  Google Scholar 

  21. K.L. Reddy, S. Kumar, A. Kumar, V. Krishnan, Wide spectrum photocatalytic activity in lanthanide-doped upconversion nanophosphors coated with porous TiO2 and AgCu bimetallic nanoparticles. J. Hazard. Mater. 367, 694–705 (2019)

    CAS  Google Scholar 

  22. K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res. 88, 428–448 (2016)

    CAS  Google Scholar 

  23. S.P. Lonkar, V.V. Pillai, S.M. Alhassan, Facile and scalable production of heterostructured ZnS–ZnO/graphene nano-photocatalysts for environmental remediation. Sci. Rep. 8, 13401–13414 (2018)

    Google Scholar 

  24. A. Kumar, V. Sharma, S. Kumar, A. Kumar, V. Krishnan, Towards utilization of full solar light spectrum using green plasmonic Au–TiOx photocatalyst at ambient conditions. Surf. Interface 11, 98–106 (2018)

    Google Scholar 

  25. X. Wu, G. Lu, C. Li, G. Shi, Room-temperature fabrication of highly oriented ZnO nanoneedle arrays by anodization of zinc foil. Nanotechnology 17, 4936 (2006). https://doi.org/10.1088/0957-4484/17/19/026

    Article  CAS  Google Scholar 

  26. E.M.P. Steinmiller, K.-S. Choi, Anodic construction of lamellar structured ZnO films using basic media via interfacial surfactant templating. Langmuir 23, 12710–12715 (2007). https://doi.org/10.1021/LA702066W

    Article  CAS  Google Scholar 

  27. C.Y. Kuan, J.M. Chou, I.C. Leu, M.H. Hon, Formation and field emission property of single-crystalline Zn microtip arrays by anodization. Electrochem. Commun. 9, 2093–2097 (2007). https://doi.org/10.1016/J.ELECOM.2007.06.004

    Article  CAS  Google Scholar 

  28. S.S. Chang, S.O. Yoon, H.J. Park, A. Sakai, Luminescence properties of Zn nanowires prepared by electrochemical etching. Mater. Lett. 53, 432–436 (2002). https://doi.org/10.1016/S0167-577X(01)00521-3

    Article  CAS  Google Scholar 

  29. S.J. Kim, J. Choi, Self-assembled arrays of ZnO stripes by anodization. Electrochem. Commun. 10, 175–179 (2008). https://doi.org/10.1016/J.ELECOM.2007.11.014

    Article  CAS  Google Scholar 

  30. G.S. Huang, X.L. Wu, Y.C. Cheng, J.C. Shen, A.P. Huang, P.K. Chu, Fabrication and characterization of anodic ZnO nanoparticles. Appl. Phys. A 864(86), 463–467 (2006). https://doi.org/10.1007/S00339-006-3778-7

    Article  Google Scholar 

  31. A. Ramirez-Canon, D.O. Miles, P.J. Cameron, D. Mattia, Zinc oxide nanostructured films produced via anodization: a rational design approach. RSC Adv. 3, 25323–25330 (2013). https://doi.org/10.1039/C3RA43886D

    Article  CAS  Google Scholar 

  32. S.-Y. Kuo, F.-I. Lai, W.-C. Chen, C.-P. Cheng, H.-C. Kuo, S.-C. Wang, Ultraviolet lasing of sol–gel-derived zinc oxide polycrystalline films. Jpn. J. Appl. Phys. 45, 3662 (2006). https://doi.org/10.1143/JJAP.45.3662

    Article  CAS  Google Scholar 

  33. V. Musat, B. Teixeira, E. Fortunato, R.C.C. Monteiro, Effect of post-heat treatment on the electrical and optical properties of ZnO:Al thin films. Thin Solid Films 502, 219–222 (2006). https://doi.org/10.1016/J.TSF.2005.07.278

    Article  CAS  Google Scholar 

  34. M. Sahal, B. Hartiti, A. Ridah, M. Mollar, B. Marí, Structural, electrical and optical properties of ZnO thin films deposited by sol–gel method. Microelectronics J. 39, 1425–1428 (2008). https://doi.org/10.1016/J.MEJO.2008.06.085

    Article  CAS  Google Scholar 

  35. L. Lin, H. Liu, X. Zhang, ZnO-template synthesis of rattle-type catalysts with supported Pd nanoparticles encapsulated in hollow ZIF-8 for liquid hydrogenation. Chem. Eng. J. 328, 124–132 (2017)

    CAS  Google Scholar 

  36. C. Bae, H. Yoo, S. Kim et al., Template-directed synthesis of oxide nanotubes: fabrication, characterization, and applications. Chem Mater 20, 756–767 (2008)

    CAS  Google Scholar 

  37. A. Dauletbekova, A. Kozlovskyi, A. Akilbekov, A. Seitbayev, A. Alzhanova, Synthesis of ZnO nanocrystals in a-SiO2/Si ion track templates. Surf. Coat. Technol. 355, 11–15 (2018)

    CAS  Google Scholar 

  38. V. Gerbreders, M. Krasovska, E. Sledevskis, A. Gerbreders, I. Mihailova, E. Tamanis, A. Ogurcovs, Hydrothermal synthesis of ZnO nanostructures with controllable morphology change. CrystEngComm 22(8), 1346–1358 (2020)

    CAS  Google Scholar 

  39. M. Zare, K. Namratha, M.S. Thakur, K. Byrappa, Biocompatibility assessment and photocatalytic activity of bio-hydrothermal synthesis of ZnO nanoparticles by Thymus vulgaris leaf extract. Mater. Res. Bull. 109, 49–59 (2019)

    CAS  Google Scholar 

  40. E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Hydrothermal synthesis of ZnO nanowires on rf sputtered Ga and Al co-doped ZnO thin films for solar cell application. J. Alloy. Compd. 721, 45–54 (2017)

    CAS  Google Scholar 

  41. L. Zhu, Y. Li, W. Zeng, Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties. Appl. Surf. Sci. 427, 281–287 (2018)

    CAS  Google Scholar 

  42. T. Sansenya, N. Masri, T. Chankhanittha, T. Senasu, J. Piriyanon, S. Mukdasai, S. Nanan, Hydrothermal synthesis of ZnO photocatalyst for detoxification of anionic azo dyes and antibiotic. J. Phys. Chem. Solids 160, 110353 (2021)

    Google Scholar 

  43. C. Feng, F. Wen, Z. Ying, L. Li, X. Zheng, P. Zheng, G. Wang, Polypeptide-assisted hydrothermal synthesis of ZnO for room temperature NO2 gas sensor under UV illumination. Chem. Phys. Lett. 754, 137745 (2020)

    CAS  Google Scholar 

  44. X. Shao, W. Xin, X. Yin, Hydrothermal synthesis of ZnO quantum dot/KNb3O8 nanosheet photocatalysts for reducing carbon dioxide to methanol. Beilstein J. Nanotechnol. 8(1), 2264–2270 (2017)

    CAS  Google Scholar 

  45. Y. Wei, X. Wang, G. Yi, L. Zhou, J. Cao, G. Sun, Z. Zhang, Hydrothermal synthesis of Ag modified ZnO nanorods and their enhanced ethanol-sensing properties. Mater. Sci. Semicond. Process. 75, 327–333 (2018)

    CAS  Google Scholar 

  46. E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Effect of annealing on the microstructural, optical and electrical properties of ZnO nanowires by hydrothermal synthesis for transparent electrode fabrication. Mater. Sci. Eng., B 227, 68–73 (2018)

    CAS  Google Scholar 

  47. H.W. Kim, Y.J. Kwon, A. Mirzaei, S.Y. Kang, M.S. Choi, J.H. Bang, S.S. Kim, Synthesis of zinc oxide semiconductors-graphene nanocomposites by microwave irradiation for application to gas sensors. Sens. Actuators B Chem. 249, 590–601 (2017)

    CAS  Google Scholar 

  48. M. Darvishi, F. Jamali-Paghaleh, M. Jamali-Paghaleh, J. Seyed-Yazdi, Facile synthesis of ZnO/rGO hybrid by microwave irradiation method with improved photoactivity. Surf. Interfaces 9, 167–172 (2017)

    CAS  Google Scholar 

  49. A. Ravanbakhsh, F. Rashchi, M. HeydarzadehSohi, R. Khayyam Nekouei, M. MortazaviSamarin, Synthesis and characterization of porous zinc oxide nano-flakes film in alkaline media. J. Ultrafine Grained Nanostruct. Mater. 51(1), 32–42 (2018)

    CAS  Google Scholar 

  50. L. Tn, P. Tt, N. Qm, V. Th, Electrochemical synthesis of ZnO nanorods/nanotubes/nanopencils on transparent aluminium-doped zinc oxide thin films for photocatalytic applications. J. Nanosci. Nanotechnol. 15, 6568–6575 (2015). https://doi.org/10.1166/JNN.2015.10502

    Article  Google Scholar 

  51. T.G. Venkatesha, Y.A. Nayaka, R. Viswanatha, C.C. Vidyasagar, B.K. Chethana, Electrochemical synthesis and photocatalytic behavior of flower shaped ZnO microstructures. Powder Technol 225, 232–238 (2012). https://doi.org/10.1016/J.POWTEC.2012.04.021

    Article  CAS  Google Scholar 

  52. S. Anandan, T. Narasinga Rao, M. Sathish et al., Superhydrophilic graphene-loaded TiO2 thin film for self-cleaning applications. ACS Appl Mater Interfaces 5, 207–212 (2013). https://doi.org/10.1021/am302557z

    Article  CAS  Google Scholar 

  53. T. Dikici, S. Yildirim, M. Yurddaskal et al., A comparative study on the photocatalytic activities of microporous and nanoporous TiO2 layers prepared by electrochemical anodization. Surf Coat Technol 263, 1–7 (2015)

    CAS  Google Scholar 

  54. M. Yurddaşkal, U. Kartal, E.C. Doluel, Titanyum Dioksit/İndirgenmiş Grafen Oksit Kompozitlerin Üretimi ve Fotokatalitik Özelliklerinin İncelenmesi. J Polytech 0900, 249–255 (2019). https://doi.org/10.2339/politeknik.537900

    Article  Google Scholar 

  55. S.D. Ponja, S. Sathasivam, I.P. Parkin, C.J. Carmalt, Highly conductive and transparent gallium doped zinc oxide thin films via chemical vapor deposition. Sci. Rep. 10(1), 1–7 (2020)

    Google Scholar 

  56. E. Ersöz, Y.O. Altintas, Green synthesis and characterization of Ag-doped ZnO nanofibers for photodegradation of MB, RhB and MO dye molecules. J. Korean Ceram. Soc. 1–16 (2022).

  57. A. Kumar, D.P. Sammaiah, Influence of process parameters on mechanical and metallurgical properties of zinc coating on mild steel during mechanical process. Current research topics in poweer, Nuclear and Fuel Energy, SP-CRTPNFE (2017).

  58. K. Mika, R.P. Socha, P. Nyga, E. Wiercigroch, K. Małek, M. Jarosz, L. Zaraska, Electrochemical synthesis and characterization of dark nanoporous zinc oxide films. Electrochim. Acta 305, 349–359 (2019)

    CAS  Google Scholar 

  59. D. Stock, S. Dongmo, D. Damtew, M. Stumpp, A. Konovalova, D. Henkensmeier, D. Schröder, Design strategy for zinc anodes with enhanced utilization and retention: electrodeposited zinc oxide on carbon mesh protected by ionomeric layers. ACS Appl. Energy Mater. 1(10), 5579–5588 (2018)

    CAS  Google Scholar 

  60. P. Basnet, D. Samanta, T.I. Chanu, J. Mukherjee, S. Chatterjee, Assessment of synthesis approaches for tuning the photocatalytic property of ZnO nanoparticles. SN Appl. Sci. 1(6), 1–13 (2019)

    CAS  Google Scholar 

  61. M.A. Nazir, T. Mahmood, N. Akhtar, K. Hussain, W.S. Khan, M.A. Waqar, J. Raza, Effect of high pressure on structural, electrical, and optical properties of graphene-like zinc oxide (g-ZnO) structure. Mater. Sci. Semicond. Process. 142, 106465 (2022)

    CAS  Google Scholar 

  62. Y. Lv, W. Xiao, W. Li, J. Xue, J. Ding, Controllable synthesis of ZnO nanoparticles with high intensity visible photoemission and investigation of its mechanism. Nanotechnology 24(17), 175702 (2013)

    Google Scholar 

  63. G.G. Qin, H.Z. Song, B.R. Zhang, J. Lin, J.Q. Duan, G.Q. Yao, Experimental evidence for luminescence from silicon oxide layers in oxidized porous silicon. Phys. Rev. B 54(4), 2548 (1996)

    CAS  Google Scholar 

  64. Y.D. Glinka, S.H. Lin, L.P. Hwang, Y.T. Chen, N.H. Tolk, Size effect in self-trapped exciton photoluminescence from SiO2-based nanoscale materials. Phys. Rev. B 64(8), 085421 (2001)

    Google Scholar 

  65. C.W. Chen, K.H. Chen, C.H. Shen, A. Ganguly, L.C. Chen, J.J. Wu, W.F. Pong, Anomalous blueshift in emission spectra of ZnO nanorods with sizes beyond quantum confinement regime. Appl. Phys. Lett. 88(24), 241905 (2006)

    Google Scholar 

  66. Y.H. Yang, X.Y. Chen, Y. Feng, G.W. Yang, Physical mechanism of blue-shift of UV luminescence of a single pencil-like ZnO nanowire. Nano Lett. 7(12), 3879–3883 (2007)

    CAS  Google Scholar 

  67. A.S. Al-Asadi, L.A. Henley, S. Ghosh, A. Quetz, I. Dubenko, N. Pradhan, N. Ali, Fabrication and characterization of ultraviolet photosensors from ZnO nanowires prepared using chemical bath deposition method. J. Appl. Phys. 119(8), 084306 (2016)

    Google Scholar 

  68. H. Lin, C.P. Huang, W. Li, C. Ni, S.I. Shah, Y.H. Tseng, Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl. Catal. B 68(1–2), 1–11 (2006)

    CAS  Google Scholar 

  69. L. Brus, Electronic wave functions in semiconductor clusters: experiment and theory. J. Phys. Chem. 90(12), 2555–2560 (1986)

    CAS  Google Scholar 

  70. W. Vallejo, A. Cantillo, C. Díaz-Uribe, Methylene blue photodegradation under visible irradiation on Ag-Doped ZnO thin films. Int. J. Photoenergy 2020, 1627498 (2020)

    Google Scholar 

  71. R. Saravanan, E. Sacari, F. Gracia, M.M. Khan, E. Mosquera, V.K. Gupta, Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. J. Mol. Liq. 221, 1029–1033 (2016)

    CAS  Google Scholar 

  72. N.R. Khalid, A. Hammad, M.B. Tahir, M. Rafique, T. Iqbal, G. Nabi, M.K. Hussain, Enhanced photocatalytic activity of Al and Fe co-doped ZnO nanorods for methylene blue degradation. Ceram. Int. 45(17), 21430–21435 (2019)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugur Kartal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oksuz, A.E., Yurddaskal, M., Kartal, U. et al. ZnO nanostructures for photocatalytic degradation of methylene blue: effect of different anodization parameters. J. Korean Ceram. Soc. 59, 859–868 (2022). https://doi.org/10.1007/s43207-022-00222-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00222-z

Keywords

Navigation