Skip to main content
Log in

Tailoring changes in the physical, structural and linear optical properties of SrCuTi2Fe14O27 W-type hexaferrite-doped PVA polymeric composite films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Physical, structural and optical properties of thin films of PVA and PVA with different content of SrCuTi2Fe14O27 W-type hexaferrite are investigated in the present work. The hexaferrite is prepared by the ceramic method, while the thin films are prepared by the casting method. The physical and structural features are studied by using X-ray diffraction patterns (XRD) and Fourier transform infrared spectroscopy (FTIR). The XRD indicates the formation of W-type hexagonal ferrite besides the M-type and spinel ferrite. The observed FTIR spectra indicate information about the vibration modes in this studied samples. The optical analysis is done and the calculated direct optical energy band gap is increased, while the indirect optical energy band gap is decreased. The Urbach tail (Eu) energy decreases with increasing SrCuTi2Fe14O27 to PVA, respectively. The band gap from ε′′ plot (Ego) and refractive index (n) values are calculated from the optical data for all investigated samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Smit, H. Wijn, Ferrites (Philips Technical Library, Eindhoven, 1959).

    Google Scholar 

  2. A. Broese van Groenou, P.F. Bongers, A.L. Stuyts, Magnetism, microstructure and crystal chemistry of spinel ferrites. Mater. Sci. Eng. 3, 317–392 (1969). https://doi.org/10.1016/0025-5416(69)90042-1

    Article  CAS  Google Scholar 

  3. Alex Goldman, Modern Ferrite Technology, 2nd edn. (Springer, Heidelberg, 2006).

    Google Scholar 

  4. Z. Chen, C. Xu, C. Ma, W. Ren, H.-M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25, 1296–1300 (2013). https://doi.org/10.1002/adma.201204196

    Article  CAS  Google Scholar 

  5. X.F. Zhang, H. Huang, X.L. Dong, Core/shell metal/heterogeneous oxide nanocapsules: the empirical formation law and tunable electromagnetic losses. J. Phys. Chem. C 117, 8563–8569 (2013). https://doi.org/10.1021/jp4015417

    Article  CAS  Google Scholar 

  6. S.M. Abbas, A.K. Dixit, R. Chatterjee, T.C. Goel, Complex permittivity, complex permeability and microwave absorption properties of ferrite-polymer composites. J. Magn. Magn. Mater. 309, 20–24 (2007). https://doi.org/10.1016/j.jmmm.2006.06.006

    Article  CAS  Google Scholar 

  7. S. Vinayasree, M. Soloman, V. Sunny, P. Mohanan, P. Kurian, M. Anantharaman, A microwave absorber based on strontium ferrite–carbon black–nitrile rubber for S and X-band applications. Compos. Sci. Technol. 82, 69–75 (2013). https://doi.org/10.1016/j.compscitech.2013.04.010

    Article  CAS  Google Scholar 

  8. R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57, 1191–1334 (2012). https://doi.org/10.1016/j.pmatsci.2012.04.001

    Article  CAS  Google Scholar 

  9. S. Amiri, H. Shokrollahi, The role of cobalt ferrite magnetic nanoparticles in medical science. Mater. Sci. Eng. C 33, 1–8 (2013). https://doi.org/10.1016/j.msec.2012.09.003

    Article  CAS  Google Scholar 

  10. S. Kayal, R.V. Ramanujan, Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. Mater. Sci. Eng. C 30, 484–490 (2010). https://doi.org/10.1016/j.msec.2010.01.006

    Article  CAS  Google Scholar 

  11. L.C. Winterton, J.M. Lally, K.B. Sentell, L.L. Chapoy, The elution of poly (vinyl alcohol) from a contact lens: the realization of a time release moisturizing agent/artificial tear. J. Biomed. Mater. Res. 80, 424–432 (2007). https://doi.org/10.1002/jbm.b.30613

    Article  CAS  Google Scholar 

  12. S. Kumar, G. Datt, A. Santhosh Kumar, A.C. Abhyankar, Enhanced absorption of microwave radiations through flexible polyvinyl alcohol-carbon black/barium hexaferrite composite films. J. Appl. Phys. 120(16), 164901 (2016). https://doi.org/10.1063/1.4964873

    Article  CAS  Google Scholar 

  13. M.A. Ahmed, R.M. Khafagy, S.T. Bishay, N.M. Saleh, Effective dye removal and water purification using the electric and magnetic Zn0.5Co0.5Al0.5Fe 1.46La0.04O4/polymer core-shell nanocomposites. J. Alloys Compd. 578, 121–131 (2013). https://doi.org/10.1016/j.jallcom.2013.04.182

    Article  CAS  Google Scholar 

  14. M.A. Darwish, A.I. Afifi, A.S. Abd, H.F. El-Hameed, A.M.A. Abosheiasha, D. Henaish, A.T. Salogub, V.G. Morchenk, V.A. Kostishyn, A.V.T. Turchenko, Can hexaferrite composites be used as a new artificial material for antenna applications? Ceram. Int. 47, 2615–2623 (2021). https://doi.org/10.1016/j.ceramint.2020.09.108

    Article  CAS  Google Scholar 

  15. E.E. Ateia, A.T. Mohamed, M. Maged, A. Abdelazim, Crystal structures and magnetic properties of polyethylene glycol/polyacrylamide encapsulated CoCuFe4O8 ferrite nanoparticles. Appl. Phys. A 126(9), 669 (2020). https://doi.org/10.1007/s00339-020-03841-7

    Article  CAS  Google Scholar 

  16. L. Li, H. Liu, Y. Wang, J. Jiang, F. Xu, Preparation and magnetic properties of Zn–Cu–Cr–La ferrite and its nanocomposites with polyaniline. J. Colloid Interface Sci. 321, 265–271 (2008). https://doi.org/10.1016/j.jcis.2008.02.013

    Article  CAS  Google Scholar 

  17. A.H. El-Sayed, O.M. Hemeda, A. Tawfik, M.A. Hamad, Remarkable magnetic enhancement of type-M hexaferrite of barium in polystyrene polymer. AIP Adv. 5, 107131 (2015). https://doi.org/10.1063/1.4934790

    Article  CAS  Google Scholar 

  18. V.K. Chakradhary, M.J. Akhtar, Highly coercive strontium hexaferrite nanodisks for microwave absorption and other industrial applications. Compos. B. 183, 107667 (2020). https://doi.org/10.1016/j.compositesb.2019.107667

    Article  CAS  Google Scholar 

  19. A.M.A. El Ata, F.M. Reicha, M.M. Ali, Transport and magnetic permeability study of SrCu2-x/2TixFe16-xO 27 W-type hexaferrites. J. Magn. Magn. Mater. 292, 17–24 (2005). https://doi.org/10.1016/j.jmmm.2004.10.091

    Article  CAS  Google Scholar 

  20. Y.A. Alibwaini, O.M. Hemeda, R. El-Shater, T. Sharshar, A.H. Ashour, A.-W. Ajlouni, E.A. Arrasheed, A.M.A. Henaish, Synthesis, characterizations, optical and photoluminescence properties of polymer blend PVA/PEG films doped eosin Y (EY) dye. Opt. Mater. 111, 110600 (2021). https://doi.org/10.1016/j.optmat.2020.110600

    Article  CAS  Google Scholar 

  21. A.M.A. Henaish, A.S. Abouhaswa, Effect of WO3 nanoparticle doping on the physical properties of PVC polymer. Bull. Mater. Sci. (2020). https://doi.org/10.1007/s12034-020-02109-3

    Article  Google Scholar 

  22. J. Kui, H. Lu, Y. Du, W-type hexagonal ferrite RxBa1-xFe18O27. J. Magn. Magn. Mater. 31–34, 801–802 (1983). https://doi.org/10.1016/0304-8853(83)90692-3

    Article  Google Scholar 

  23. D. Lisjak, A. Žnidaršič, A. Sztanislav, M. Drofenik, A two-step synthesis of NiZn-W hexaferrites. J. Eur. Ceram. Soc. 28, 2057–2062 (2008). https://doi.org/10.1016/j.jeurceramsoc.2008.02.005

    Article  CAS  Google Scholar 

  24. H. Kalita, P. Pal, S. Dhara, A. Pathak, Fabrication and characterization of polyvinyl alcohol/metal (Ca, Mg, Ti) doped zirconium phosphate nanocomposite films for scaffold-guided tissue engineering application. Mater. Sci. Eng. C 71, 363–371 (2017). https://doi.org/10.1016/j.msec.2016.09.063

    Article  CAS  Google Scholar 

  25. L.A. García-Cerda, M.U. Escareño-Castro, M. Salazar-Zertuche, Preparation and characterization of polyvinyl alcohol-cobalt ferrite nanocomposites. J. Non Cryst. Solids. 353, 808–810 (2007). https://doi.org/10.1016/j.jnoncrysol.2006.12.046

    Article  CAS  Google Scholar 

  26. Y. Yang, C. Liu, H. Wu, Preparation and properties of poly(vinyl alcohol)/exfoliated α-zirconium phosphate nanocomposite films. Polym. Test. 28, 371–377 (2009). https://doi.org/10.1016/j.polymertesting.2008.12.008

    Article  CAS  Google Scholar 

  27. A. El-Khodary, A.H. Oraby, M.M. Abdelnaby, Characterization, electrical and magnetic properties of PVA films filled with FeCl3-MnCl2 mixed fillers. J. Magn. Magn. Mater. 320(11), 1739–1746 (2008). https://doi.org/10.1016/j.jmmm.2008.01.030

    Article  CAS  Google Scholar 

  28. C.M. Tang, Y.H. Tian, S.H. Hsu, Poly(vinyl alcohol) nanocomposites reinforced with bamboo charcoal nanoparticles: mineralization behavior and characterization. Materials 8, 4895–4911 (2015). https://doi.org/10.3390/ma8084895

    Article  CAS  Google Scholar 

  29. S. Rashidi, A. Ataie, Structural and magnetic characteristics of PVA/CoFe 2 O 4 nano-composites prepared via mechanical alloying method. Mater. Res. Bull. 80, 321–328 (2016). https://doi.org/10.1016/j.materresbull.2016.04.021

    Article  CAS  Google Scholar 

  30. A.M. Al-Saie, M. Bououdina, A. Jaffar, S. Arekat, J.M. Melnyczuk, Y.T. Thai, C.S. Brazel, The effect of annealing on the structure, magnetic properties and AC heating of CoFe2O4 for biomedical applications. J. Alloys Compd. 509, S393–S396 (2011). https://doi.org/10.1016/j.jallcom.2011.02.024

    Article  CAS  Google Scholar 

  31. T. Siddaiah, P. Ojha, N.O.G.V.R. Kumar, C. Ramu, Structural, optical and thermal characterizations of PVA/MAA:EA Polyblend Films. Mater. Res. (2018). https://doi.org/10.1590/1980-5373-MR-2017-0987

    Article  Google Scholar 

  32. F.M. Ali, Synthesis and characterization of a novel erbium doped poly(vinyl alcohol) films for multifunctional optical materials. J. Inorg. Organomet. Polym. Mater. 30, 2418–2429 (2020). https://doi.org/10.1007/s10904-019-01386-8

    Article  CAS  Google Scholar 

  33. T.A. Hamdalla, T.A. Hanafy, A.E. Bekheet, Influence of erbium ions on the optical and structural properties of polyvinyl alcohol. J. Spectrosc. 2015, 1–7 (2015). https://doi.org/10.1155/2015/204867

    Article  CAS  Google Scholar 

  34. M.B. Mohamed, M.H. Abdel-Kader, Effect of annealed ZnS nanoparticles on the structural and optical properties of PVA polymer nanocomposite. Mater. Chem. Phys. 241, 122285 (2020). https://doi.org/10.1016/j.matchemphys.2019.122285

    Article  CAS  Google Scholar 

  35. T.S. Soliman, S.A. Vshivkov, S.I. Elkalashy, Structural, thermal, and linear optical properties of SiO2 nanoparticles dispersed in polyvinyl alcohol nanocomposite films. Polym. Compos. 41, 3340–3350 (2020). https://doi.org/10.1002/pc.25623

    Article  CAS  Google Scholar 

  36. T.A. Hamdalla, T.A. Hanafy, Optical properties studies for PVA/Gd, La, Er or y chlorides based on structural modification. Optik 127, 878–882 (2016). https://doi.org/10.1016/j.ijleo.2015.10.187

    Article  CAS  Google Scholar 

  37. H.I. Elsaeedy, H.E. Ali, H. Algarni, I.S. Yahia, Nonlinear behavior of the current–voltage characteristics for erbium-doped PVA polymeric composite films. Appl. Phys. A Mater. Sci. Process. 125, 1–10 (2019). https://doi.org/10.1007/s00339-018-2375-x

    Article  CAS  Google Scholar 

  38. A.M.A. Henaish, S.A.M. Issa, H.M.H. Zakaly, H.O. Tekin, A. Abouhaswa, Characterization of optical and radiation shielding behaviors of ferric oxide reinforced bismuth borate glass. Phys. Scr. 96, 075801 (2021). https://doi.org/10.1088/1402-4896/abf581

    Article  Google Scholar 

  39. A.I. Elazaka, Hesham M.H.. Zakaly, Shams A.M.. Issa, M. Rashad, H.O. Tekin, H.A. Saudi, V.H. Gillette, T.T. Erguzel, A.G. Mostafa, New approach to removal of hazardous bypass cement dust (BCD) from the environment: 20Na2O-20BaCl2-(60–x)B2O3-(x)BCD glass system and optical, mechanical, structural and nuclear radiation shielding competences. J. Hazard. Mater. 403, 123738 (2021). https://doi.org/10.1016/j.jhazmat.2020.123738

    Article  CAS  Google Scholar 

  40. H.M.H. Zakaly, M. Rashad, H.O. Tekin, H.A. Saudi, S.A.M. Issa, A.M.A. Henaish, Synthesis, optical, structural and physical properties of newly developed dolomite reinforced borate glasses for nuclear radiation shielding utilizations: an experimental and simulation study. Opt. Mater. 114, 110942 (2021). https://doi.org/10.1016/j.matchemphys.2019.122285

    Article  CAS  Google Scholar 

  41. J. Yan, Y. Huang, X. Chen, C. Wei, Conducting polymers-NiFe2O4 coated on reduced graphene oxide sheets as electromagnetic (EM) wave absorption materials. Synth. Met. 221, 291–298 (2016). https://doi.org/10.1016/j.synthmet.2016.09.018

    Article  CAS  Google Scholar 

  42. A.M.A. Henaish, M.M. Ali, D.E. El Refaay, I.A. Weinstein, O.M. Hemeda, Synthesis, electric and magnetic characterization of nickel ferrite/ PANI nano-composite prepared by flash auto combustion method. J. Inorg. Organomet. Polym. 31, 731–740 (2020). https://doi.org/10.1007/s10904-020-01737-w

    Article  CAS  Google Scholar 

  43. M. Khairy, Synthesis, characterization, magnetic and electrical properties of polyaniline/NiFe2O4 nanocomposite. Synth. Met. 189, 34–41 (2014). https://doi.org/10.1016/j.synthmet.2013.12.022

    Article  CAS  Google Scholar 

  44. O.M. Hemeda, M.I. Abdel-Ati, B.I. Salem, A.M.A. Henaish, F.S. El-Sbakhy, Spectral studies of nano Ni ferrite doped with Cr ions. Eur. Phys. J. Plus (2018). https://doi.org/10.1140/epjp/i2018-12346-9

    Article  Google Scholar 

  45. Z.A. Boeva, V.G. Sergeyev, Polyaniline: synthesis, properties, and application. Polym. Sci. Ser. C 56, 144–153 (2014). https://doi.org/10.1134/S1811238214010032

    Article  CAS  Google Scholar 

  46. M. Khairy, M.E. Gouda, Electrical and optical properties of nickel ferrite/polyaniline nanocomposite. J. Adv. Res. 6, 555–562 (2015). https://doi.org/10.1016/j.jare.2014.01.009

    Article  CAS  Google Scholar 

  47. S.E. Shirsath, R.H. Kadam, S.M. Patange, M.L. Mane, A. Ghasemi, A. Morisako, Enhanced magnetic properties of Dy 3+ substituted Ni-Cu-Zn ferrite nanoparticles. Appl. Phys. Lett. 100, 042407 (2012). https://doi.org/10.1063/1.3679688

    Article  CAS  Google Scholar 

  48. A.R. Chavan, S.D. Birajdar, R.R. Chilwar, K.M. Jadhav, Structural, morphological, optical, magnetic and electrical properties of Al3+ substituted nickel ferrite thin films. J. Alloys Compd. 735, 2287–2297 (2018). https://doi.org/10.1016/j.jallcom.2017.11.326

    Article  CAS  Google Scholar 

  49. A. Lassoued, M.S. Lassoued, B. Dkhil, S. Ammar, A. Gadri, Substituted effect of Al3+ on structural, optical, magnetic and photocatalytic activity of Ni ferrites. J. Magn. Magn. Mater. 476, 124–133 (2019). https://doi.org/10.1016/j.jmmm.2018.12.062

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Ali.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, M.M., Hemeda, O.M. & Henaish, A.M.A. Tailoring changes in the physical, structural and linear optical properties of SrCuTi2Fe14O27 W-type hexaferrite-doped PVA polymeric composite films. J Mater Sci: Mater Electron 32, 16038–16051 (2021). https://doi.org/10.1007/s10854-021-06153-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06153-5

Navigation