Skip to main content
Log in

Synthesis, Electric and Magnetic Characterization of Nickel Ferrite/PANI Nano-Composite Prepared by Flash Auto Combustion Method

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

NiFe2O4/PANI nano-composite with different polyaniline (PANI) content (25%, 50% and 75%) is synthesized. The NiFe2O4 (NF) is prepared by the flash auto combustion method and annealed at 400 °C for 2 h. The PANI is prepared by oxidative polymerization of aniline. The X-ray diffraction (XRD) technique confirmed that the NiFe2O4 particles are successfully dispersed in the PANI matrix with single phase structure. The characteristic absorption bands are observed from infrared (IR) spectra for the pure NF, pure PANI and their nano-composite. The dielectric constant (\({\varepsilon }^{^{\prime}})\) behavior of NF/PANI nano-composite at higher PANI content tends to be a polymer behavior. The Curie temperature decreased by increasing the PANI content and it is attributed to the basis of A-B exchange interaction due to the variation of \({Fe}^{3+}\) content among the octahedral and tetrahedral sites. The values of the saturation magnetization (Ms), remanence magnetization (Mr), coercivity (Hc), area and squareness (Mr/Ms) are measured by using a vibrating sample magnetometer (VSM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Sun, R. Zhang, Z. Wang, L. Ju, E. Cao, Y. Zhang, Structural, dielectric and magnetic properties of NiFe2O4 prepared via sol–gel auto-combustion method. J. Magn. Magn. Mater. 421, 65–70 (2017)

    Article  CAS  Google Scholar 

  2. L. Panbo, H. Ying, Z. Xiang, Cubic NiFe2O4 particles on graphene–polyaniline and their enhanced microwave absorption properties. Compos. Sci. Technol. 107, 54–60 (2015)

    Article  Google Scholar 

  3. M. Kurian, D.S. Nair, Effect of preparation conditions on Nickel Zinc Ferrite nanoparticles: A comparison between sol–gel auto combustion and co-precipitation methods. J. of Saudi Chemical Society. 20, S517–S522 (2016)

    Article  CAS  Google Scholar 

  4. M. Khairy, M.E. Gouda, Electrical and optical properties of nickel ferrite/polyaniline nanocomposite. J. of Adv. Res. 6, 555–562 (2015)

    Article  CAS  Google Scholar 

  5. L. Panbo, H. Ying, Z. Xiang, Superparamagnetic NiFe2O4 particles on poly(3,4-ethylenedioxythiophene)–graphene: Synthesis, characterization and their excellent microwave absorption properties. Compos. Sci. Technol. 95, 107–113 (2014)

    Article  Google Scholar 

  6. M. Khairy, Synthesis, characterization, magnetic and electrical properties of polyaniline/NiFe2O4 nanocomposite. Synth. Met. 189, 34–41 (2014)

    Article  CAS  Google Scholar 

  7. J. Yan, Y. Huang, X. Chen, C. Wei, Conducting polymers-NiFe2O4 coated on reduced graphene oxide sheets as electromagnetic (EM) wave absorption materials. Synth. Met. 221, 291–298 (2016)

    Article  CAS  Google Scholar 

  8. M. Ajmal, M.U. Islam, Structural, optical and dielectric properties of polyaniline-Nio.5 Zno.5Fe2O4 nano-composites. Phys. B 521, 355–360 (2017)

    Article  CAS  Google Scholar 

  9. A.M.A. Henaish, A.S. Abouhaswa, Effect of WO3 nanoparticles doping on the physical properties of PVC polymer. Bull. Mater. Sci. 43, 149 (2020)

    Article  CAS  Google Scholar 

  10. J.C. Aphesteguy, P.G. Bercoff, S.E. Jacobo, Preparation of magnetic and conductive Ni–Gd ferrite-polyaniline composite. Phys. B 398, 200–203 (2007)

    Article  CAS  Google Scholar 

  11. A.C.V. de Araujo et al., Synthesis, characterization and magnetic properties of polyaniline-magnetite nanocomposites. Synth. Met. 160, 685–690 (2010)

    Article  Google Scholar 

  12. B. Senthilkumar, K. Vijaya Sankar, C. Sanjeeviraja, R. Kalai Selvan, Synthesis and physico-chemical property evaluation of PANI–NiFe2O4 nanocomposite as electrodes for supercapacitors. J of Alloys and Compounds 553: 350–357 (2013).

  13. C. Wang, Y. Shen, X. Wang, H. Zhang, A. Xie, Synthesis of novel NiZn-ferrite/Polyaniline nanocomposites and their microwave absorption properties. Mater. Sci. Semicond. Process. 16, 77–82 (2013)

    Article  CAS  Google Scholar 

  14. A.H. Elsayed, M.S. Mohy Eldin, A.M. Elsyed, A.H. Abo Elazm, E.M. Younes, Motaweh, Synthesis and Properties of Polyaniline/ferrites Nanocomposites. Int. J. Electrochem. Sci. 6, 206–221 (2011)

    CAS  Google Scholar 

  15. J. Zhoua, Synthesis and electromagnetic property of Li0.35Zn0.3Fe235O4 grafted with polyaniline fibers. Appl. Surf. Sci. 420, 154–160 (2017)

    Article  Google Scholar 

  16. M. Bakr, Karimat EL-Sayed, Structural, magnetic and dielectric properties of (PANI)–Ni05Zn05Fe15Cr05O4 nanocomposite. Compos. B 56, 270–278 (2014)

    Article  Google Scholar 

  17. S. Sultana, Rafiuddin, Mohammad Zain Khan, Khalid Umar, Synthesis and characterization of copper ferrite nanoparticles doped polyaniline. J. Alloy. Compd. 535, 44–49 (2012)

    Article  CAS  Google Scholar 

  18. A.M.A. Henaish, M. Mostafa, B.I. Salem, O.M. Hemeda, Improvement of magnetic and dielectric properties of magneto electric BST-NCZMF nano-composite. Phase Transitions 93, 470–490 (2020)

    Article  CAS  Google Scholar 

  19. S.A. Ebrahima, M.E. Harbb, M.M. Solimana, M.B. Tayelb, Preparation and characterization of a pseudocapacitor electrode by spraying a conducting polymer onto a flexible substrate. J. of Taibah University for Science 10, 281–285 (2016)

    Article  Google Scholar 

  20. A. Baykal, M. Gunay, M.S. Toprak, H. Sozeri, Effect of ionic liquids on the electrical and magnetic performance of polyaniline–nickel ferrite nanocomposite. Mater. Res. Bull. 48, 378–382 (2013)

    Article  CAS  Google Scholar 

  21. C. Liu, H. Tai, P. Zhang, Z. Yuan, X. Du, G. Xie, Y. Jiang, A high-performance flexible gas sensor based on self-assembled PANI-CeO2 nanocomposite thin film for trace-level NH3 detection at room temperature. Sensors and Actuators B 261, 587–597 (2018)

    Article  CAS  Google Scholar 

  22. A.M.A. Henaish, Physical and spectral studies of Mg-Zn ferrite prepared by different methods. Arab. J. Nucl. Sci. Appl. 53(1), 9–18 (2019)

    Google Scholar 

  23. O.M. Hemeda, A. Tawfik, M.A. Amer, B.M. Kamal, D.E. El Refaay, DC conductivity and magnetic properties of piezoelectric–piezomagnetic composite system. J. Magn. Magn. Mater. 324, 3229–3237 (2012)

    Article  CAS  Google Scholar 

  24. C. Tanasoiu, I. Nicolae, P. Nicolau, H. Niculescu, C. Mihaiache, A new type of thermostat of high stability using a magnetic temperature transducer. J. Phys. E: Sci. Instr. 18, 50 (1985)

    Article  Google Scholar 

  25. C. Venkataraju, G. Sathishkumar, K. Sivakumar, Effect of Cd on the structural, magnetic and electrical properties of nanostructured Mn–Zn ferrite. J. Magn. Magn. Mater. 323, 1817–1822 (2011)

    Article  CAS  Google Scholar 

  26. Y. Zhi, A. Chen, Maxwell-Wagner polarization in ceramic composites BaTiO3–(Ni0.3Zn0.7)Fe2.1O4. J. of Applied Physics 9(1), 794 (2002)

    Google Scholar 

  27. A.A. Sattar, H.M. El-Sayed, K.M. El-Shokofy, M.M. El-Tabey, Improvement of the Magnetic Properties of Mn-Ni-Zn Ferrite by the Non-magnetic Al3+-Ion Substitution. J. App. Sci. 5(1), 162–168 (2005)

    Article  Google Scholar 

  28. U.S. Sharma, R. Shah, Study of polyaniline coated CuFe2O4 nanoparticles and their application in biosensor. AIP Conf. Proc. 1728, 020275 (2016)

    Article  Google Scholar 

  29. A. Tawfik, O.M. Hemeda, A.M.A. Henaish, A.M. Dorgham, High Piezoelectric Properties of Modified Nano Lead Titanate Zirconate Ceramics. Mater. Chem. Phys. 211, 1–8 (2018)

    Article  CAS  Google Scholar 

  30. D.K. Bandgar, S.T. Navale, S.R. Nalage, R.S. Mane, F.J. Stadler, D.K. Aswal, S.K. Gupta, V.B. Patil, Simple and low-temperature polyaniline-based flexible ammonia sensor: a step towards laboratory synthesis to economical device design. J. Mater. Chem. 3, 9461–9468 (2015)

    Article  CAS  Google Scholar 

  31. O.M. Hemeda, A.M.A. Henaish, B.I. Salem, F.S. El-Sbakhy, M.A. Hamad, The dielectric and magnetic properties of RTV-silicon rubber Ni–Cr ferrite composites. Appl. Phys. A. 126, 121 (2020)

    Article  CAS  Google Scholar 

  32. N. Raghuram, T.S. Rao, K.C.B. Naidu, Investigations on functional properties of hydrothermally synthesized Ba1-xSrxFe12O19 (x= 0.0–0.8) nanoparticles. Appl. Phys. A 125(839), 1–15 (2019)

    Google Scholar 

  33. A.M. Shaikh, S.C. Watawe, S.S. Bellad, S.A. Jadhav, B.K. Chougule, Microstructural and magnetic properties of Zn substituted Li–Mg ferrites. Mater. Chem. Phys. 65, 46–50 (2000)

    Article  CAS  Google Scholar 

  34. T.H. Ting, R.P. Yu, Y.N. Jau, Synthesis and microwave absorption characteristics of polyaniline/NiZn ferrite composites in 2–40 GHz. Mater. Chem. Phys. 126, 364–368 (2011)

    Article  CAS  Google Scholar 

  35. S. Mazen, M. Abdallah, R. Nakhla, H. Zaki, F. Metawe, Mater. Chem. Phys. 34, 35–40 (1993)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. A. Henaish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henaish, A.M.A., Ali, M.M., Refaay, D.E.E. et al. Synthesis, Electric and Magnetic Characterization of Nickel Ferrite/PANI Nano-Composite Prepared by Flash Auto Combustion Method. J Inorg Organomet Polym 31, 731–740 (2021). https://doi.org/10.1007/s10904-020-01737-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01737-w

Keywords

Navigation