Skip to main content
Log in

Synthesis and Characterization of a Novel Erbium Doped Poly(vinyl alcohol) Films for Multifunctional Optical Materials

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Polymer films based on poly vinyl alcohol (PVA) doped with different contents (0, 4, 8, 16, 20 and 28) wt% of Erbium(III) ions were synthesized by the simple solution casting technique. The structural characteristics of the films were studied by X-ray diffraction pattern (XRD), Fourier transform infrared (FT-IR) spectroscopy and atomic force microscopy measurements (AFM) measurement whereas the optical behavior of these films have been investigated using UV–Vis-NIR spectroscopy and photoluminescence measurements. The structural parameters of the interplanar (d) spacing, crystallite length (L) and the average interchain separation determined from the XRD and the absorption bands of the active IR groups recorded in FT-IR spectra indicate bonding of positively charged Er3+ ions with negatively charged OH groups of the PVA chains. The average cluster size (D) of the samples estimated from AFM data shows larger values than that obtained from XRD measurements. The optical gaps obtained from absorption spectra fitting and Tauch relations are approximately equal and slightly decreased by Er3+ ions incorporation in the PVA matrix whereas the high frequency refractive indices estimated according to Moss and Dimitrov formulae showing small increase. Three intense peaks of 607 nm, 733 nm and 783 nm wavelengths due to energy levels transitions of erbium were recorded in the photoluminescence spectra PVA–Er3+. The collected data support consideration of PVA–Er3+ films as a promising optical polymer material in microptics, planar polymer waveguides, polymer optical fiber and polymer light emitting diodes applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Amarnath Reddy, S. Surendra Babu, K. Pradeesh, C.J. Otton, G. Vijaya Prakash, J. Alloys Compd. 509, 4047–4052 (2011)

    Google Scholar 

  2. N.H. Bahra, M.S. Jaafar, S.M. Iskandar, S.K. Cheng, J. Optoelectron. Biomed. Mater. 7(2), 47–52 (2015)

    Google Scholar 

  3. T. Ragin, J. Zmojda, M. Kochanowicz, D. Dorosz, Photon. Lett. Pol. 7(2), 38–40 (2015)

    CAS  Google Scholar 

  4. A.J. Kenyon, Prog. Quantum Electron. 26, 225–284 (2002)

    CAS  Google Scholar 

  5. M. Schmidt, J. Heitmann, R. Scholz, M. Zacharias, J. Non-Cryst. Solids 299–302, 678–682 (2002)

    Google Scholar 

  6. A. Polman, J. Appl. Phys. 82(1), 1–39 (1997)

    CAS  Google Scholar 

  7. J.D.B. Bradley, M. Pollnau, Laser Photon. Rev. 5(3), 368–403 (2011)

    CAS  Google Scholar 

  8. V.A.G. Rivera, Y. Ledemi, M. El-Amraoui, Y. Messaddeq, E. Marega Jr., J. Non-Cryst. Solids 392–393, 45–50 (2014)

    Google Scholar 

  9. G. Seeta Rama Raju, S. Buddhudu, A. Varada Rajulu, L. Ganga Devi, Spectrosc. Lett. 39, 487–495 (2006)

    Google Scholar 

  10. K. Naveen Kumar, K. Sivaiah, S. Buddhudu, J. Lumin. 147, 316–323 (2014)

    CAS  Google Scholar 

  11. M.B. Lawrence, J.A.E. Desa, S. Francis, V.P. Dessai, Mater. Res. Express 6, 065319 (2019)

    CAS  Google Scholar 

  12. W. Li, Y. Tao, G. An, P. Yan, Y. Li, G. Li, Dyes Pigm. 146, 47–53 (2017)

    CAS  Google Scholar 

  13. M. Obula Reddy, B. Chandra Babu, Indian J. Mater. Sci. (2015). https://doi.org/10.1155/2015/927364

    Article  Google Scholar 

  14. J. Guravamma, C. Sai Vandana, B.H. Rudramadevi, Int. J. Chem. Tech. Res. 7(2), 613–616 (2014)

    CAS  Google Scholar 

  15. T.A. Hamdalla, T.A. Hanafy, Optik 127, 878–882 (2016)

    CAS  Google Scholar 

  16. R. Min, B. Ortega, C. Marques, Photonics 6(36), 2–18 (2019)

    Google Scholar 

  17. G. Jin, L. Xia, Z. Liu, H. Lin, J. Ling, W. Hongbin, L. Hou, Y. Mo, J. Mater. Chem. C 4, 905–913 (2016)

    CAS  Google Scholar 

  18. F.M. Ali, J. Mol. Struct. 1189, 352–359 (2019)

    CAS  Google Scholar 

  19. K.A.M. Abd El-Kader, S.F. Abdel Hamied, J. Appl. Polym. Sci. 86, 1219–1226 (2002)

    Google Scholar 

  20. L.W. Chan, J.S. Hao, P.W.S. Heng, Chem. Pharm. Bull. 47(10), 1412–1416 (1999)

    CAS  Google Scholar 

  21. A. El-Khodary, A.H. Oraby, M.M. Abdelnaby, J. Magn. Magn. Mater. 320, 1739–1746 (2008)

    CAS  Google Scholar 

  22. A.K. Himanshu, S.K. Bandyopadhayay, P. Sen, N.N. Monda, A. Talpatra, G.S. Taki, T.P. Sinha, Radiat. Phys. Chem. 80, 414–419 (2011)

    CAS  Google Scholar 

  23. H.M. Ragab, Results Phys. 7, 2057–2065 (2017)

    Google Scholar 

  24. F.M. Ali, I.M. Ashraf, ShM Alqahtani, Phys. B 527, 24–29 (2017)

    CAS  Google Scholar 

  25. F.M. Ali, F. Maiz, Phys. B 530, 19–23 (2018)

    CAS  Google Scholar 

  26. J.M. Guerrero, A. Carrillo, M.L. Mota, R.C. Ambrosio, F.S. Aguirre, Molecules 24, 63 (2019)

    Google Scholar 

  27. C. Srikanth, B. Chakradhar Sridhar, B.M. Nagabhushana, R.D. Mathad, Int. J. Appl. Innov. Eng. Manag. 3(9), 200–208 (2014)

    Google Scholar 

  28. R.J. Sengwa, S. Choudhary, J. Appl. Polym. Sci. (2014). https://doi.org/10.1002/app.40617

    Article  Google Scholar 

  29. F.M. Ali, R.M. Kershi, M.A. Sayed, Y.M. Abou Deif, Phys. B 538, 160–166 (2018)

    CAS  Google Scholar 

  30. Y. Luo, X. Jiang, W. Zhang, X. Li, Polym. Polym. Compos. 23(8), 555–562 (2015)

    CAS  Google Scholar 

  31. K.S. Hemalatha, K. Rukmani, RSC Adv. 6, 74354–74366 (2016)

    CAS  Google Scholar 

  32. T. Siddaiah, P. Ojha, N.O. Gopal Velikanti Ramesh Kumar, C. Ramu, Mater. Res. 21(5), e20170987 (2018)

    CAS  Google Scholar 

  33. A.K. Bajpai, A. Goswami, J. Bajpai, B.K. Sinha, Macromol. Res. 26(4), 305–316 (2018)

    CAS  Google Scholar 

  34. I. Stoica, E. Angheluta, M. Ivan, A. Farcas, D.O. Dorohoi, Digest. J. Nanomater. Biostruct. 6(4), 1667–1674 (2011)

    Google Scholar 

  35. Z. Peng, L.X. Kong, Polym. Bull. 59, 207–216 (2007)

    CAS  Google Scholar 

  36. K.E. Strawhecker, E. Manias, Macromolecules 34, 8475–8482 (2001)

    CAS  Google Scholar 

  37. A.K. Bajpai, R. Bhatt, R. Katare, Micron 90, 12–17 (2016)

    CAS  PubMed  Google Scholar 

  38. A.K. Pramanick, S. Gupta, T. Mishra, A. Sinha, Mater. Sci. Eng. C 32, 222–227 (2012)

    CAS  Google Scholar 

  39. S. Choudhary, R.J. Sengwa, Curr. Appl. Phys. 18, 1041–1058 (2018)

    Google Scholar 

  40. S.B. Aziz, A.Q. Hassan, S.J. Mohammed, W.O. Karim, M.F.Z. Kadir, H.A. Tajuddin, N.N.M.Y. Chan, Nanomaterials 9, 216 (2019)

    CAS  PubMed Central  Google Scholar 

  41. T. Yoshinaga, Y. Iso, T. Isobe, ECS J. Solid State Sci. Technol. 7(1), R3034–R3039 (2018)

    CAS  Google Scholar 

  42. K.H. Mahmoud, Z.M. El-Bahy, A.I. Hanafy, J. Phys. Chem. Solids 72, 1057–1065 (2011)

    CAS  Google Scholar 

  43. X. Mateos, R. Solé, J. Gavaldá, M. Aguiló, F. Díaz, J. Massons, J. Lumin. 115, 131–137 (2005)

    CAS  Google Scholar 

  44. D.K. Sardar, R.M. Yow, J.B. Gruber, Opt. Mater. 30, 987–992 (2008)

    CAS  Google Scholar 

  45. X. Shiqing, Z. Yang, S. Dai, J. Yang, H. Lili, Z. Jiang, J. Alloys Compd. 361, 313–319 (2003)

    Google Scholar 

  46. E.M. Abdelrazek, A.M. Abdelghany, S.I. Badr, M.A. Morsi, J. Mater. Res. Technol. 7, 419–431 (2018)

    CAS  Google Scholar 

  47. O. Norfazlinayati, Z.A. Talib, N.G. Nik Salleh, A.H. Shaari, H. Mohd Hamzah, Int. J. Nanoelectron. Mater. 11(4), 435–448 (2018)

    Google Scholar 

  48. S. Mahendia, A.K. Tomar, R.P. Chahal, P. Goyal, S. Kumar, J. Phys. D: Appl. Phys. 44, 8 (2015)

    Google Scholar 

  49. G. Vijaya Kumar, R. Chandramani, Appl. Surf. Sci. 255, 7047–7050 (2009)

    Google Scholar 

  50. A.M. El Sayed, H.M. Diab, R. El-Mallawany, J. Polym. Res. 20, 255 (2013)

    Google Scholar 

  51. A.M. Abdelghany, A.H. Oraby, M.O. Farea, Phys. B 560, 162–173 (2019)

    CAS  Google Scholar 

  52. L. Escobar-Alarcon, A. Arrieta, E. Camps, S. Muhl, S. Rodil, E. Vigueras-Santiago, Appl. Surf. Sci. 254, 412–415 (2007)

    CAS  Google Scholar 

  53. N. Ghobadi, Nano Lett. 3, 2 (2013)

    Google Scholar 

  54. E. Keaney, J. Shearer, A. Panwar, J. Mead, J. Compos. Mater. 52(24), 3299–3307 (2018)

    Google Scholar 

  55. N. Sultanova, S. Kasarova, I. Nikolov, Bulg. J. Phys. 40, 258–264 (2013)

    CAS  Google Scholar 

  56. N. Sultanova, S. Kasarova, I. Nikolov, Acta Phys. Pol. A 116(4), 585–587 (2009)

    CAS  Google Scholar 

  57. N.M. Ravindra, P. Ganapathy, J. Choi, Infrared Phys. Technol. 50, 21–29 (2007)

    CAS  Google Scholar 

  58. V. Dimitrov, T. Komatsu, J. Univ. Chem. Technol. Metallurgy 45(3), 219–250 (2010)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. M. Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, F.M. Synthesis and Characterization of a Novel Erbium Doped Poly(vinyl alcohol) Films for Multifunctional Optical Materials. J Inorg Organomet Polym 30, 2418–2429 (2020). https://doi.org/10.1007/s10904-019-01386-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01386-8

Keywords

Navigation