Skip to main content

Advertisement

Log in

Enhanced electrochemical energy storage of RGO@CoxSy through nanostructural modulation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Either CoxSy transition metal sulfide or reduced graphene oxide (RGO) has become major electrode material for supercapacitor. Herein, nanostructured RGO@CoxSy composites were optimized by different sulfur sources and a one-step solvothermal method. The nano-sesame sphere RGO@Co4S3 (NSS-RGO@Co4S3) and nano-crispy stuffed nori RGO@Co3S4 (NCSN-RGO@Co3S4) were formed from thiourea and TAA, respectively. The synergistic effect of RGO and CoxSy promoted the electrochemical properties of RGO@CoxSy electrode material for energy storage. The synergistic effect between RGO and CoxSy and the structure–function relationship of RGO@CoxSy improve the electrochemical energy storage of nanostructured RGO@CoxSy. NSS-RGO@Co4S3 was given to priority to energy storage than NCSN-RGO@Co3S4 due to the crack between NSS-RGO@Co4S3 nanoparticles could shorten the ion diffusion path. A high specific capacitance of 1085 F·g−1 with 0.5 A·g−1 and energy density of 37.67 Wh⋅kg−1 at a power density of 0.125 KW⋅kg−1 for nanostructured NSS-RGO@Co4S3 was obtained, whose specific capacitance is nearly 1.3 times as large as NCSN-RGO@Co3S4 and about 96 times larger than one of RGO. It is realized to improve the electrochemical performance of electrode materials with nanostructural modulation. This study showed the nanostructured RGO@CoxSy can effectively control and broaden the other electrode material to electrochemical energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P.J. Hall, M. Mirzaeian, S.I. Fletcher, F.B. Sillars, A.J.R. Rennie, G.O. Shitta-Bey, G. Wilson, A. Cruden, R. Carter, Energy Environ. Sci. 3, 1238–1251 (2010)

    Article  CAS  Google Scholar 

  2. G. Wang, L. Zhang, Chem. Soc. Rev. 41, 797–828 (2012)

    Article  CAS  Google Scholar 

  3. Z.B.G. Yu, X. Xie, L. Pan, Y. Cui, Nano Energy 2, 213–234 (2013)

    Article  CAS  Google Scholar 

  4. J. Shen, J. Wu, L. Pei, M.F. Rodrigues, Z. Zhang, F. Zhang, X. Zhang, P.M. Ajayan, M. Ye, Adv. Energy Mater. 6, 1600341 (2016)

    Article  Google Scholar 

  5. L. Lyu, K. Seong, J.M. Kim, W. Zhang, X. Jin, D.K. Kim, Y. Jeon, J. Kang, Y. Piao, Nano-Micro Lett. 11, 88 (2019)

    Article  CAS  Google Scholar 

  6. Y. Luo, W. Que, C. Yang, Y. Tian, X. Yin, Electrochim. Acta. 322, 134738 (2019)

    Article  CAS  Google Scholar 

  7. J. Cherusseri, N. Choudhary, K. Sambath Kumar, Y. Jung, J. Thomas, Nanoscale Horizons 4, 840–858 (2019)

    Article  CAS  Google Scholar 

  8. Y. Yang, P. Yang, J. Nanosci. Nanotechnol. 19, 4758–4764 (2019)

    Article  CAS  Google Scholar 

  9. Y. Wang, J. Wu, Y. Tang, X. Lü, C. Yang, M. Qin, F. Huang, X. Li, X. Zhang, A.C.S. Appl, Mater. Interfaces 4, 4246–4250 (2012)

    Article  CAS  Google Scholar 

  10. X. Lei, K. Yu, R. Qi, Z. Zhu, Chem. Eng. J. 347, 607–617 (2018)

    Article  CAS  Google Scholar 

  11. X. Wang, Q. Zhang, J. Sun, Z. Zhou, Q. Li, B. He, J. Zhao, W. Lu, C. Wong, Y. Yao, J. Mater. Chem. A 6, 8030–8038 (2018)

    Article  CAS  Google Scholar 

  12. Y. Jiang, G. Zou, W. Hong, Y. Zhang, Y. Zhang, H. Shuai, W. Xu, H. Hou, X. Ji, Nanoscale 10, 18786–18794 (2018)

    Article  CAS  Google Scholar 

  13. X. W, X. Xiao, Z. Zhang, K. Yang, T. Mei, D. Yan, J. Alloys Compd. 853, 157118 (2021)

    Article  Google Scholar 

  14. J. Huang, J. Wei, Y. Xiao, Y. Xu, Y. Xiao, Y. Wang, L. Tan, K. Yuan, Y. Chen, ACS Nano 12, 3030–3041 (2018)

    Article  CAS  Google Scholar 

  15. Y. Dong, S. Chen, J. Liu, J. Lei, J. Wang, Mater. Lett. 254, 73–76 (2019)

    Article  CAS  Google Scholar 

  16. W. Zou, J. Chen, L. Hu, Q. Li, X. Yao, L. Gu, J. Deng, R. Yu, X. Xing, J. Mater. Chem. C 2, 8564–8568 (2014)

    Article  CAS  Google Scholar 

  17. N. Liu, Z. Pan, X. Ding, J. Yang, G. Xu, L. Li, Q. Wang, M. Liu, Y. Zhang, J. Energy Chem. 41, 209–215 (2019)

    Article  Google Scholar 

  18. M. Jin, S.-Y. Lu, L. Ma, M.-Y. Gan, Y. Lei, X.-L. Zhang, G. Fu, P.-S. Yang, M.-F. Yan, J. Power Sources 341, 294–301 (2017)

    Article  CAS  Google Scholar 

  19. C. Guo, W. Zhang, Y. Liu, J. He, S. Yang, M. Liu, Q. Wang, Z. Guo, Adv. Funct. Mater. 29, 1–9 (2019)

    Google Scholar 

  20. X. Qiu, Y. Yu, Z. Peng, M. Asif, Z. Wang, L. Jiang, W. Wang, Z. Xu, H. Wang, H. Liu, J. Alloys Compd. 815, 152457 (2020)

    Article  CAS  Google Scholar 

  21. D.M. El-Gendy, I.M. Afifi, N.K. Allam, J. Energy Storage 24, 100760 (2019)

    Article  Google Scholar 

  22. H. Liu, W. Liu, P. Chen, J. Zhao, Z. Su, Int. J. Energy Res. 44, 11742–11755 (2020)

    Article  CAS  Google Scholar 

  23. S. Yan, S. Luo, J. Feng, P. Li, R. Guo, Q. Wang, Y. Zhang, Y. Liu, S. Bao, Chem. Eng. J. 381, 122695 (2020)

    Article  CAS  Google Scholar 

  24. F. Zhao, W. Huang, H. Zhang, D. Zhou, Appl. Surf. Sci. 426, 1206–1212 (2017)

    Article  CAS  Google Scholar 

  25. J. Du, Q. Yan, Y. Li, K. Cheng, K. Ye, K. Zhu, J. Yan, D. Cao, X. Zhang, G. Wang, Appl. Surf. Sci. 487, 198–205 (2019)

    Article  CAS  Google Scholar 

  26. J. Zhu, Y. Wang, Y. Xu, S. Li, J. Ren, W. Cai, Int. J. Energy Res. 44, 2864–2874 (2020)

    Article  CAS  Google Scholar 

  27. E.A. Permyakov, V.S. Dorokhov, V.V. Maximov, P.A. Nikulshin, A.A. Pimerzin, V.M. Kogan, Catal. Today 305, 19–27 (2017)

    Article  Google Scholar 

  28. D. Ghosh, C.K. Das, A.C.S. Appl, Mater. Interfaces 7, 1122–1131 (2015)

    Article  CAS  Google Scholar 

  29. D. Zhao, Z. Tang, W. Xu, Z. Wu, L. Ma, Z. Cui, C. Yang, L. Li, J. Colloid Interface Sci. 560, 186–197 (2020)

    Article  CAS  Google Scholar 

  30. Z.Y. Gao, C. Chen, J.L. Chang, L.M. Chen, P.Y. Wang, D.P. Wu, F. Xu, K. Jiang, Chem. Eng. J. 343, 572–582 (2018)

    Article  CAS  Google Scholar 

  31. Y. Han, R. Zhang, C. Dong, F. Cheng, Y. Guo, S. Biosens, Bioelectron. 142, 111529 (2019)

    Article  CAS  Google Scholar 

  32. Y. Wu, C. Zhu, L. Shu, J. Duan, D. Wei, J. Xu, Z. Zhu, L. Li, Z. Peng, Z. Chen, Appl. Surf. Sci. 489, 528–537 (2019)

    Article  CAS  Google Scholar 

  33. Z. Yang, X. Zhu, K. Wang, G. Ma, H. Cheng, F. Xu, Appl. Surf. Sci. 347, 690–695 (2015)

    Article  CAS  Google Scholar 

  34. K. Le, Z. Wang, F. Wang, Q. Wang, Q. Shao, V. Murugadoss, S. Wu, W. Liu, J. Liu, Q. Gao, Z. Guo, Dalt. Trans. 48, 5193–5202 (2019)

    Article  CAS  Google Scholar 

  35. W.Q. Li, Y.H. Li, H.Q. Fu, G.X. Yang, Q. Zhang, S.Z. Chen, F. Peng, Chem. Eng. J. 381, 122683 (2020)

    Article  CAS  Google Scholar 

  36. J.G. Wang, D.D. Jin, R. Zhou, C. Shen, K.Y. Xie, B.Q. Wei, J. Power Sources 306, 100–106 (2016)

    Article  CAS  Google Scholar 

  37. A.M. De Jong, V.H.J. De Beer, J.A.R. Van Veen, J.W. Niemantsverdriet, J. Phys. Chem. 100, 17722–17724 (1996)

    Article  Google Scholar 

  38. M. Xu, H. Niu, J. Huang, J. Song, C. Mao, S. Zhang, C. Zhu, C. Chen, Appl. Surf. Sci. 351, 374–381 (2015)

    Article  CAS  Google Scholar 

  39. Y. Du, X. Zhu, X. Zhou, L. Hu, Z. Dai, J. Bao, J. Mater. Chem. A 3, 6787–6791 (2015)

    Article  CAS  Google Scholar 

  40. D. Banerjee, R.V. Jagadeesh, K. Junge, M.M. Pohl, J. Radnik, A. Brückner, M. Beller, Angew. Chemie Int. Ed. 53, 4359–4363 (2014)

    Article  CAS  Google Scholar 

  41. C. Feng, J. Zhang, Y. He, C. Zhong, W. Hu, L. Liu, Y. Deng, ACS Nano 9, 1730–1739 (2015)

    Article  CAS  Google Scholar 

  42. T. Jiang, S. Yang, P. Dai, X. Yu, Z. Bai, M. Wu, G. Li, C. Tu, Electrochim. Acta. 261, 143–150 (2018)

    Article  CAS  Google Scholar 

  43. J.-M. Jian, L. Fu, J. Ji, L. Lin, X. Guo, T.-L. Ren, Sens. Actuators B 262, 125–136 (2018)

    Article  CAS  Google Scholar 

  44. M. Li, H. Zhou, W. Yang, C. Liang, H. Zheng, N. Zhang, C. Fu, Y. Kuang, J. Mater. Chem. A 5, 1014–1021 (2017)

    Article  CAS  Google Scholar 

  45. K. Prabakaran, M. Lokanathan, B. Kakade, Appl. Surf. Sci. 466, 830–836 (2019)

    Article  CAS  Google Scholar 

  46. R. Kumar, S.M. Youssry, M.M. Abdel-Galeil, A. Matsuda, J. Mater. Sci. Mater. Electron. 31, 15456–15465 (2020)

    Article  Google Scholar 

  47. A.G. Tabrizi, N. Arsalani, Z. Naghshbandi, L.S. Ghadimi, A. Mohammadi, Int. J. Hydrogen Energy 43, 12200–12210 (2018)

    Article  CAS  Google Scholar 

  48. Z. Wang, H.Y. Yue, Z.M. Yu, F. Yao, X. Gao, E.H. Guan, H.J. Zhang, W.Q. Wang, S.S. Song, Sci. Mater. Electron. 30, 8537–8545 (2019)

    Article  CAS  Google Scholar 

  49. A. Mohammadi, N. Arsalani, A.G. Tabrizi, S.E. Moosavifard, Z. Naqshbandi, L.S. Ghadimi, Chem. Eng. J. 334, 66–80 (2018)

    Article  CAS  Google Scholar 

  50. P. Liu, Y. Sui, F. Wei, J. Qi, Q. Meng, Y. Ren, Y. He, J. Mater. Sci. Mater. Electron. 30, 19077–19086 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fund of the State Key Laboratory of Solidification Processing in NWPU (SKLSP201749) and an Open Fund of Key Laboratory of Petroleum Fine Chemicals in Shaanxi Province (SH1420SKF0003 and SH1516SKF0002). The authors would thank the National and Provincial College Students’ Innovative Entrepreneurial Training Program (201410703015 and 1242), Natural Science Basic Research Plan (2014JQ6208) of Shaanxi Provincial Technological Department, the Fifteenth SSRT project of Xi’an University of Architecture and Technology.

Author information

Authors and Affiliations

Authors

Contributions

YB: syntheses of samples, investigation, data curation, formal analysis, writing-original draft, writing-review & editing. GH: conceptualization, methodology, formal analysis, validation, writing-review & editing, writing-original draft, resources, supervision. ZS: writing-review & editing. BZ, DW: formal analysis, investigation. HF: SEM, TEM testing. CZ: XRD, XPS, AFM testing. HY: electrochemical testing.

Corresponding author

Correspondence to Geping He.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, G., Bai, Y., HuangFu, H. et al. Enhanced electrochemical energy storage of RGO@CoxSy through nanostructural modulation. J Mater Sci: Mater Electron 32, 13639–13655 (2021). https://doi.org/10.1007/s10854-021-05942-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05942-2

Navigation