Skip to main content
Log in

A novel design of Co3O4@SiO2/rGO for supercapacitor electrode with improved performance

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Obtaining electrode materials with excellent electrochemical properties is always a challenge in the research of new energy materials. This paper presents a novel composite material prepared using a simple method, which involves embedding core–shell Co3O4@SiO2 nanoparticles onto highly conductive reduced graphene oxide (rGO) with excellent electrochemical performance. The results indicate that the encapsulation of the polymer with the core–shell material enhances the electrochemical performance. In this process, graphene oxide is reduced to reduced graphene oxide (rGO) by the hydrothermal method, and then the prepared core–shell Co3O4@SiO2 nanoparticles are embedded into the network structure of reduced graphene oxide (rGO). In addition, we investigate the optimal mass ratio of the core–shell material Co3O4@SiO2 and rGO in the Co3O4@SiO2/rGO composite. We prepare composites with different ratios of 4:1, 2:1, 4:3, 1:1, and 4:5, Co3O4@SiO2/rGO. The experimental results illustrate that when the current density is 0.4 A/g, the specific capacitance of the composite Co3O4@SiO2/rGO (1:1) is up to 216 F/g, and the volumetric capacitance is 372 F cm−3, which is more than fivefold higher than that of the core–shell material Co3O4@SiO2. Such large performance improvement is mainly attributed to the addition of rGO which can improve the conductivity of the entire composite material and the aggregation of Co3O4@SiO2, thus providing more active sites. This study confirms that the electrochemical properties of graphene oxide can be greatly improved by the combination of hydrothermal reduction graphene oxide with core–shell material Co3O4@SiO2, which provides a certain reference value for the further research of high-performance electrode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request. All data generated or analyzed during this study are included in this published article.

References

  1. Wang Z, Pan S, Wang B et al (2021) Asymmetric supercapacitors based on Co3O4@MnO2@PPy porous pattern core-shell structure cathode materials. J Electrochem Sci Technol 12(3):346–357. https://doi.org/10.33961/jecst.2020.01795

    Article  CAS  Google Scholar 

  2. Rajesh JA, Lee YH, Yun YH et al (2019) Potentiostatic deposition of CoNi2Se4 nanostructures on nickel foam as efficient battery-type electrodes for supercapacitors. J Electroanal Chem 850:113371. https://doi.org/10.1016/j.jelechem.2019.113371

    Article  CAS  Google Scholar 

  3. Yoon Y, Lee K, Baik C et al (2013) Anti-solvent derived non-stacked reduced graphene oxide for high performance supercapacitors. Adv Mater 25(32):4437–4444. https://doi.org/10.1002/adma.201301230

    Article  CAS  PubMed  Google Scholar 

  4. Xu J, Liu S, Liu Y (2016) Co3O4/ZnO nanoheterostructure derived from core–shell ZIF-8@ZIF-67 for supercapacitors. RSC Adv 6(57):52137–52142. https://doi.org/10.1039/c6ra07773k

    Article  ADS  CAS  Google Scholar 

  5. Gao Y, Wu J, Zhang W et al (2014) The calcined zeolitic imidazolate framework-8 (ZIF-8) under different conditions as electrode for supercapacitor applications. J Solid State Electrochem 18:3203–3207. https://doi.org/10.1007/s10008-014-2578-9

    Article  CAS  Google Scholar 

  6. Liu N, Cheng J, Hou W et al (2021) Unsaturated Zn–N2–O active sites derived from hydroxyl in graphene oxide and zinc atoms in core shell ZIF-8@ ZIF-67 nanocomposites enhanced CO2 adsorption capacity. Microporous Mesoporous Mater 312:110786. https://doi.org/10.1016/j.micromeso.2020.110786

    Article  CAS  Google Scholar 

  7. Li Y, Li K, Luo Y et al (2020) Synthesis of Co3O4/ZnO nano-heterojunctions by one-off processing ZIF-8@ ZIF-67 and their gas-sensing performances for trimethylamine. Sens Actuators, B Chem 308:127657. https://doi.org/10.1016/j.snb.2020.127657

    Article  CAS  Google Scholar 

  8. Tang J, Salunkhe RR, Liu J et al (2015) Thermal conversion of core–shell metal–organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. J Am Chem Soc 137(4):1572–1580. https://doi.org/10.1021/ja511539a

    Article  CAS  PubMed  Google Scholar 

  9. Cheng E, Huang S, Chen D et al (2019) Porous ZnO/Co3O4/N-doped carbon nanocages synthesized via pyrolysis of complex metal–organic framework (MOF) hybrids as an advanced lithium-ion battery anode. Acta Crystallographica Section C: Structural Chem 75(7):969–978. https://doi.org/10.1107/S2053229619008222

    Article  ADS  CAS  Google Scholar 

  10. Zhu L, Hao C, Zhou S et al (2021) Ternary ZnO/Co3O4/NiO inherited layered core-shell structure from a double template for high performanced supercapacitor. J Materiomics 7(4):708–720. https://doi.org/10.1016/j.jmat.2021.01.003

    Article  ADS  Google Scholar 

  11. Xiao L, Zhou J, Yu Z et al (2023) A novel design of Co3O4@ SiO2/PPy for supercapacitor electrode with improved performance. J Mater Sci: Mater Electron 34(6):474. https://doi.org/10.1007/s10854-022-09656-x

    Article  CAS  Google Scholar 

  12. Zhu M, Chen Q, Kan J et al (2019) Cobalt oxide nanoparticles embedded in N-doped porous carbon as an efficient electrode for supercapacitor. Energ Technol 7(4):1800963. https://doi.org/10.1002/ente.201800963

    Article  CAS  Google Scholar 

  13. Xu M, Guo H, Zhang T et al (2021) High-performance zeolitic imidazolate frameworks derived three-dimensional Co3S4/polyaniline nanocomposite for supercapacitors. J Energy Storage 35:102303. https://doi.org/10.1016/j.est.2021.102303

    Article  Google Scholar 

  14. Chaikittisilp W, Hu M, Wang H et al (2012) Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. Chem Commun 48(58):7259–7261. https://doi.org/10.1039/c2cc33433j

    Article  CAS  Google Scholar 

  15. Ogata C, Kurogi R, Awaya K et al (2017) All-graphene oxide flexible solid-state supercapacitors with enhanced electrochemical performance. ACS Appl Mater Interfaces 9(31):26151–26160. https://doi.org/10.1021/acsami.7b04180

    Article  CAS  PubMed  Google Scholar 

  16. Kandhasamy N, Preethi LK, Mani D et al (2023) RGO nanosheet wrapped β-phase NiCu2S nanorods for advanced supercapacitor applications. Environ Sci Pollut Res 30(7):18546–18562. https://doi.org/10.1007/s11356-022-23359-0

    Article  CAS  Google Scholar 

  17. Lin Y, Su S, Cui Y et al (2023) Regulating manganese valence in MnOx/rGO composite for high-performance supercapacitors. J Mater Sci: Mater Electron 34(16):1308. https://doi.org/10.1007/s10854-023-10747-6

    Article  CAS  Google Scholar 

  18. Rajasekaran S, Reghunath BS, SD KR et al (2023) Bi functional manganese-pyridine 2, 6 dicarboxylic acid metal organic frameworks with reduced graphene oxide as an electroactive material for energy storage and water splitting applications. J Electrochem Soc 170(3):036505. https://doi.org/10.1149/1945-7111/acbfe3

    Article  CAS  Google Scholar 

  19. Wu H, Li S, Liu Y et al (2023) Metal–organic framework-derived hollow carbon nanosphere@ Ni/reduced graphene oxide composites for supercapacitor electrodes with enhanced performance. ACS Applied Nano Materials 6(3):1582–1591. https://doi.org/10.1021/acsanm.2c04327

    Article  CAS  Google Scholar 

  20. Li X, Zhang W, Kang H et al (2023) Self-assembled CoS2/NiCo2S4/RGO nanohybrids as advanced electrode for hybrid supercapacitor with enhanced energy density and ultra-long durability. J Energy Storage 67:107528. https://doi.org/10.1016/j.est.2023.107528

    Article  Google Scholar 

  21. Ahmed S, Rafat M (2018) Hydrothermal synthesis of PEDOT/rGO composite for supercapacitor applications. Materials Research Express 5(1):015507. https://doi.org/10.1088/2053-1591/aaa232

    Article  ADS  CAS  Google Scholar 

  22. Kandhasamy N, Ramalingam G, Murugadoss G et al (2021) Copper and zinc oxide anchored silica microsphere: a superior pseudocapacitive positive electrode for aqueous supercapacitor applications. J Alloy Compd 888:161489. https://doi.org/10.1016/j.jallcom.2021.161489

    Article  CAS  Google Scholar 

  23. Surekha G, Krishnaiah K V, Ravi N, et al. (2020) FTIR, Raman and XRD analysis of graphene oxide films prepared by modified Hummers method. Journal of Physics: Conference Series. IOP Publishing 1495(1): 012012. https://doi.org/10.1088/1742-6596/1495/1/012012

  24. Sánchez-Campos D, Rodríguez-Lugo V, Sánchez-Vargas FC et al (2020) Simple process and uncomplicated reduction of graphene oxide. Mater Chem Phys 242:122325. https://doi.org/10.1016/j.matchemphys.2019.122325

    Article  CAS  Google Scholar 

  25. Ma L, Fan H, Wei X et al (2018) Towards high areal capacitance, rate capability, and tailorable supercapacitors: Co3O4@ polypyrrole core–shell nanorod bundle array electrodes. J Materials Chem A 6(39):19058–19065. https://doi.org/10.1039/c8ta07477a

    Article  CAS  Google Scholar 

  26. Fan LQ, Liu GJ, Wu JH et al (2014) Asymmetric supercapacitor based on graphene oxide/polypyrrole composite and activated carbon electrodes. Electrochim Acta 137:26–33. https://doi.org/10.1016/j.electacta.2014.05.137

    Article  CAS  Google Scholar 

  27. Yin D, Huang G, Sun Q et al (2016) RGO/Co3O4 composites prepared using GO-MOFs as precursor for advanced lithium-ion batteries and supercapacitors electrodes. Electrochim Acta 215:410–419. https://doi.org/10.1016/j.electacta.2016.08.110

    Article  CAS  Google Scholar 

  28. Shi J, Li X, Yang T et al (2021) Co3O4 porous nanorod/N-doped reduced graphene oxide composite with fast pseudocapacitive lithium storage for high-performance lithium-ion capacitors. J Mater Sci 56:7520–7532. https://doi.org/10.1007/s10853-020-05640-0

    Article  ADS  CAS  Google Scholar 

  29. Meng J, Wang Y, Xie X et al (2019) High-performance asymmetric supercapacitor based on graphene-supported iron oxide and manganese sulfide. Ionics 25:4925–4933. https://doi.org/10.1007/s11581-019-03061-x

    Article  CAS  Google Scholar 

  30. Shrivastav V, Sundriyal S, Kaur A et al (2020) Conductive and porous ZIF-67/PEDOT hybrid composite as superior electrode for all-solid-state symmetrical supercapacitors. J Alloy Compd 843:155992. https://doi.org/10.1016/j.jallcom.2020.155992

    Article  CAS  Google Scholar 

  31. Wang L, Yang H, Pan G et al (2017) Polyaniline-carbon nanotubes@zeolite imidazolate framework67-carbon cloth hierarchical nanostructures for supercapacitor electrode. Electrochim Acta 240:16–23. https://doi.org/10.1016/j.electacta.2017.04.035

    Article  CAS  Google Scholar 

  32. Rangelova N, Radev L, Nenkova S et al (2011) Methylcellulose/SiO2 hybrids: sol-gel preparation and characterization by XRD, FTIR and AFM. Cent Eur J Chem 9:112–118. https://doi.org/10.2478/s11532-010-0123-y

    Article  CAS  Google Scholar 

  33. Guo D, Zhang M, Chen Z et al (2017) Hierarchical Co3O4@PPy core-shell composite nanowires for supercapacitors with enhanced electrochemical performance. Mater Res Bull 96:463–470. https://doi.org/10.1016/j.materresbull.2017.05.048

    Article  CAS  Google Scholar 

  34. Wang Z, Huang B, Dai Y et al (2012) Crystal facets controlled synthesis of graphene@TiO2 nanocomposites by a one-pot hydrothermal process. CrystEngComm 14(5):1687–1692. https://doi.org/10.1039/c1ce06193c

    Article  CAS  Google Scholar 

  35. Liu Y, Zhang Y, Ma G et al (2013) Ethylene glycol reduced graphene oxide/polypyrrole composite for supercapacitor. Electrochim Acta 88:519–525. https://doi.org/10.1016/j.electacta.2012.10.082

    Article  CAS  Google Scholar 

  36. Karakoti M, Jangra R, Pandey S et al (2020) Spray dryer processed graphene oxide/reduced graphene oxide for high-performance supercapacitor. Int J Appl Ceram Technol 17(4):1899–1908. https://doi.org/10.1111/ijac.13529

    Article  CAS  Google Scholar 

  37. Yu L, Zhang Y, Zhang B et al (2013) Preparation and characterization of HPEI-GO/PES ultrafiltration membrane with antifouling and antibacterial properties. J Membr Sci 447:452–462. https://doi.org/10.1016/j.memsci.2013.07.042

    Article  CAS  Google Scholar 

  38. Liu S, Wang Y, Ma Z (2018) Bi2O3 with reduced graphene oxide composite as a supercapacitor electrode. Int J Electrochem Sci 13:12256–12265. https://doi.org/10.20964/2018.12.10

    Article  CAS  Google Scholar 

  39. Liang X, Liu L, Cai G et al (2020) Evidence for pseudocapacitance and Faradaic charge transfer in high-mobility thin-film transistors with solution-processed oxide dielectrics. The J Physical Chem Lett 11(7):2765–2771. https://doi.org/10.1021/acs.jpclett.0c00583

    Article  CAS  Google Scholar 

  40. Ali GAM, Fouad OA, Makhlouf SA et al (2014) Co3O4/SiO2 nanocomposites for supercapacitor application. J Solid State Electrochem 18:2505–2512. https://doi.org/10.1007/s10008-014-2510-3

    Article  CAS  Google Scholar 

  41. Jung HY, Kim YR, Jeong HT (2020) All-solid-state supercapacitor composed of reduced graphene oxide (rGO)/activated carbon (AC) composite and polymer electrolyte. Carbon Letters 30:107–113. https://doi.org/10.1007/s42823-019-00077-1

    Article  Google Scholar 

  42. Ghosh A, Lee YH (2012) Carbon-based electrochemical capacitors. Chemsuschem 5(3):480–499. https://doi.org/10.1002/cssc.201100645

    Article  CAS  PubMed  Google Scholar 

  43. Tripathi SK, Kumar A, Hashmi SA (2006) Electrochemical redox supercapacitors using PVdF-HFP based gel electrolytes and polypyrrole as conducting polymer electrode. Solid State Ionics 177(33–34):2979–2985. https://doi.org/10.1016/j.ssi.2006.03.059

    Article  CAS  Google Scholar 

  44. Meher SK, Rao GR (2011) Ultralayered Co3O4 for high-performance supercapacitor applications. The J Physical Chem C 115(31):15646–15654. https://doi.org/10.1021/jp201200e

    Article  CAS  Google Scholar 

  45. Jing M, Zhou M, Li G et al (2017) Graphene-embedded Co3O4 rose-spheres for enhanced performance in lithium ion batteries. ACS Appl Mater Interfaces 9(11):9662–9668. https://doi.org/10.1021/acsami.6b16396

    Article  CAS  PubMed  Google Scholar 

  46. Zha X, Wu Z, Cheng Z et al (2021) High performance energy storage electrodes based on 3D Z-CoO/RGO nanostructures for supercapacitor applications. Energy 220:119696. https://doi.org/10.1016/j.energy.2020.119696

    Article  CAS  Google Scholar 

  47. Raja M, Kumar ABVK, Arora N et al (2015) Studies on electrochemical properties of ZnO/rGO nanocomposites as electrode materials for supercapacitors. Fullerenes, Nanotubes, Carbon Nanostruct 23(8):691–694. https://doi.org/10.1080/1536383X.2014.971117

    Article  ADS  CAS  Google Scholar 

  48. Zhang J, Zhang Z, Jiao Y et al (2019) The graphene/lanthanum oxide nanocomposites as electrode materials of supercapacitors. J Power Sources 419:99–105. https://doi.org/10.1016/j.jpowsour.2019.02.059

    Article  CAS  Google Scholar 

  49. Xu J, Wu L, Liu Y et al (2020) NiO-rGO composite for supercapacitor electrode. Surfaces and Interfaces 18:100420. https://doi.org/10.1016/j.surfin.2019.100420

    Article  CAS  Google Scholar 

  50. Zhou W, Liu J, Chen T et al (2011) Fabrication of Co3O4-reduced graphene oxide scrolls for high-performance supercapacitor electrodes. Phys Chem Chem Phys 13(32):14462–14465. https://doi.org/10.1039/c1cp21917k

    Article  CAS  PubMed  Google Scholar 

  51. Luo D, Li Y, Liu J et al (2013) One-step solution-phase synthesis of a novel RGO–Cu2O–TiO2 ternary nanocomposite with excellent cycling stability for supercapacitors. J Alloy Compd 581:303–307. https://doi.org/10.1016/j.jallcom.2013.07.080

    Article  CAS  Google Scholar 

  52. Xiang C, Li M, Zhi M et al (2013) A reduced graphene oxide/Co3O4 composite for supercapacitor electrode. J Power Sources 226:65–70. https://doi.org/10.1016/j.jpowsour.2012.10.064

    Article  CAS  Google Scholar 

  53. Mojtahedi S, Serrapede M, Lamberti A et al (2021) A facile, safe and controllable morphology synthesis of rGO_Cu2O nanocomposite as a binder-free electrode for electrochemical capacitors. Electrochim Acta 390:138856. https://doi.org/10.1016/j.electacta.2021.138856

    Article  CAS  Google Scholar 

  54. Xia X, Chao D, Zhang Y et al (2016) Generic synthesis of carbon nanotube branches on metal oxide arrays exhibiting stable high-rate and long-cycle sodium-ion storage. Small 12(22):3048–3058. https://doi.org/10.1002/smll.201600633

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of China (NSFC) (No. 51707015) and the Scientific Research Fund of the Sichuan Science and Technology Department (No. 2022JDRC0080).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the concept and design of this study. CY provided guidance on the research direction. ZJK and XLJ carried out material preparation, data collection, and analysis. ZS, LJQ, and HLH helped with the progress of the experiment. ZJK wrote the first draft of the manuscript, and all authors commented on the previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yan Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Xiao, L., Zhou, S. et al. A novel design of Co3O4@SiO2/rGO for supercapacitor electrode with improved performance. Ionics 30, 1075–1087 (2024). https://doi.org/10.1007/s11581-023-05341-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05341-z

Keywords

Navigation