Skip to main content
Log in

A novel bifunctional metalloporphyrin-based hyper-crosslinked ionic polymer as heterogeneous catalyst for efficiently converting CO2 into cyclic carbonates

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The rapid development of industrialization generated an urgent requirement for the catalytic conversion of CO2 into high-value-added chemical products. Herein, a class of novel bifunctional metalloporphyrin-based hyper-crosslinked ionic polymer (ImHCP-Co) was synthesized via one-pot Friedel–Crafts alkylation and quaternization reactions. The obtained bifunctional ImHCP-Co showed a high BET surface area and sufficient CO2 adsorption capacity. Relying on the synergistic effect of the electrophilic and nucleophilic functionalities, the as-prepared ImHCP-Co showed an excellent performance in CO2 cycloaddition using epichlorohydrin as the substrate (99% conversion and 99% selectivity) and can be carried out without any solvents or cocatalysts to afford a high turnover number. Importantly, it could also convert various epoxide substrates into the corresponding cyclic carbonates and can maintain 82.5% of its catalytic ability after 5 cycles. The catalytic mechanism was systematically explained by DFT calculation and proved the cooperative effect of Co2+ centers and nucleophilic Cl in the catalytic process. This study provides a new avenue for the design and preparation of HCP-based multifunctional catalysts used for the treatment of greenhouse gases.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Scheme 2
Figure 5
Figure 6
Figure 7
Fig. 8
Scheme 3

Similar content being viewed by others

References

  1. Wang Q, Chen PB, Li XJ, Liang Y, Pan YM (2023) Chemical fixation of carbon dioxide into cyclic carbonates catalyzed by porous materials. Asian J Org Chem 12:e00308. https://doi.org/10.1002/ajoc.202300308

    Article  CAS  Google Scholar 

  2. Cheng XL, Wu MX, Li J, Wang WC, Mitsuzaki N, Chen ZD (2023) Conversion of carbon dioxide into solid carbon materials-a mini review. Catal Sci Technol 13:3891–3900. https://doi.org/10.1039/d3cy00332a

    Article  CAS  Google Scholar 

  3. Saleh HM, Hassan AI (2023) Green conversion of carbon dioxide and sustainable fuel synthesis. Fire-basel 6:128. https://doi.org/10.3390/fire6030128

    Article  Google Scholar 

  4. Mou SY, Wu TW, Xie JF et al (2019) Boron phosphide nanoparticles: a nonmetal catalyst for high-selectivity electrochemical reduction of CO2 to CH3OH. Adv Mater 31:1903499. https://doi.org/10.1002/adma.201903499

    Article  CAS  Google Scholar 

  5. Modak A, Bhanja P, Dutta S, Chowdhury B, Bhaumik A (2020) Catalytic reduction of CO2 into fuels and fine chemicals. Green Chem 22:4002–4033. https://doi.org/10.1039/d0gc01092h

    Article  CAS  Google Scholar 

  6. Gao P, Dang SS, Li SG et al (2017) Direct production of lower olefins from CO2 conversion via bifunctional catalysis. ACS Catal 8:571–578. https://doi.org/10.1021/acscatal.7b02649

    Article  CAS  Google Scholar 

  7. Gu JR, Yuan YX, Zhao TX, Liu F, Xu Y, Tao DJ (2022) Ionic-containing hyper-crosslinked polymer: a promising bifunctional material for CO2 capture and conversion. Sep Purif Technol 301:121971. https://doi.org/10.1016/j.seppur.2022.121971

    Article  CAS  Google Scholar 

  8. Xiao LQ, Lai YM, Zhao R, Song QY, Cai JY, Yin XY, Zhao YL, Hou LX (2022) Ionic conjugated polymers as heterogeneous catalysts for the cycloaddition of carbon dioxide to epoxides to form carbonates under solvent-and cocatalyst-free conditions. Chem Plus Chem 87:e00324. https://doi.org/10.1002/cplu.202200324

    Article  CAS  Google Scholar 

  9. Sodpiban O, Phungpanya C, Gobbo SD, Arayachukiat S, Piromchart T, D’Elia V (2021) Rational engineering of single-component heterogeneous catalysts based on abundant metal centers for the mild conversion of pure and impure CO2 to cyclic carbonates. Chem Eng J 422:129930. https://doi.org/10.1016/j.cej.2021.129930

    Article  CAS  Google Scholar 

  10. Li GQ, Dong S, Fu P, Yue QH, Zhou Y, Wang J (2022) Synthesis of porous poly (ionic liquid)s for chemical CO2 fixation with epoxides. Green Chem 24:3433–3460. https://doi.org/10.1039/d2gc00324d

    Article  CAS  Google Scholar 

  11. Tomazett VK, Chacon G, Marin G, Castegnaro MV, das Chagas RP, Lião LM, Dupont J, Qadir MI (2023) Ionic liquid confined spaces controlled catalytic CO2 cycloaddition of epoxides in BMIm ZnCl3 and its supported ionic liquid phases. J CO2 Util 69:102400. https://doi.org/10.1016/j.jcou.2023.102400

    Article  CAS  Google Scholar 

  12. Norouzi F, Abdolmaleki A (2023) Acidic pyridinium ionic liquid: an efficient bifunctional organocatalyst to synthesis carbonate from atmospheric CO2 and epoxide. Mol Catal 538:112988. https://doi.org/10.1016/j.mcat.2023.112988

    Article  CAS  Google Scholar 

  13. Podrojková N, Oriňak A, Garcia-Verdugo E, Sans V, Zanatta M (2023) On the role of multifunctional ionic liquids for the oxidative carboxylation of olefins with carbon dioxide. Catal Today 418:114128. https://doi.org/10.1016/j.cattod.2023.114128

    Article  CAS  Google Scholar 

  14. Trukhanov AV, Turchenko VO, Bobrikov LA, Trukhanov SV, Kazakevich IS, Balagurov AM (2015) Crystal structure and magnetic properties of the BaFe12-xAlxO19 (x=0.1–1.2) solid solutions. J Magn Magn Mater 393:253–259. https://doi.org/10.1016/j.jmmm.2015.05.076

    Article  CAS  Google Scholar 

  15. Zdorovets MV, Kozlovskiy AL, Shlimas DI, Borgekov DB (2021) Phase transformations in FeCo-Fe2CoO4/Co3O4-spinel nanostructures as a result of thermal annealing and their practical application. J Mater Sci-Mater El 32:16694–16705. https://doi.org/10.1007/s10854-021-06226-5

    Article  CAS  Google Scholar 

  16. Kadyrzhanov KK, Shlimas DI, Kozlovskiy AL, Zdorovets MV (2020) Research of the shielding effect and radiation resistance of composite CuBi2O4 films as well as their practical applications. J Mater Sci-Mater El 31:11729–11740. https://doi.org/10.1007/s10854-020-03724-w

    Article  CAS  Google Scholar 

  17. El-Shater RE, Shimy HE, Saafan SA et al (2023) Fabrication of doped ferrites and exploration of its structure and magnetic behavior. Mater Adv 4:2794–2810. https://doi.org/10.1039/d3ma00105a

    Article  CAS  Google Scholar 

  18. Zubar TI, Sharko SA, Tishkevich DI et al (2018) Anomalies in Ni-Fe nanogranular films growth. J Alloy Compd 748:970–978. https://doi.org/10.1016/j.jallcom.2018.03.245

    Article  CAS  Google Scholar 

  19. Kozlovskiy AL, Zdorovets MV (2019) Synthesis, structural, strength and corrosion properties of thin films of the type CuX (X = Bi, Mg, Ni). J Mater Sci 30:11819–11832. https://doi.org/10.1007/s10854-019-01556-x

    Article  CAS  Google Scholar 

  20. Luo RC, Yang YY, Chen KC et al (2021) Tailored covalent organic frameworks for simultaneously capturing and converting CO2 into cyclic carbonates. J Mater Chem A 9:20941–20956. https://doi.org/10.1039/d1ta05428g

    Article  CAS  Google Scholar 

  21. Ji H, Kanagaraj N, Lee W, Kim TS, Kim D, Cho D (2020) Pyridinium functionalized ionic metal-organic frameworks designed as bifunctional catalysts for CO2 fixation into cyclic carbonates. ACS Appl Mater Interfaces 12:24868–24876. https://doi.org/10.1021/acsami.0c05912

    Article  CAS  Google Scholar 

  22. Gao ZY, Liang L, Zhang X, Xu P, Sun JM (2021) Facile one-pot synthesis of Zn/Mg-MOF-74 with unsaturated coordination metal centers for efficient CO2 adsorption and conversion to cyclic carbonates. ACS Appl Mater Interfaces 13:61334–61345. https://doi.org/10.1021/acsami.1c20878

    Article  CAS  Google Scholar 

  23. Da Mata ÁFA, Glanzmann N, Stroppa PHF, Martins FT, das Chagas RP, da Silva AD, Milani JLS (2022) Single-component, metal-free solvent-free HO-functionalized 1, 2, 3-triazole-based ionic liquid catalysts for efficient CO2 conversion. New J Chem 46:12237–12243. https://doi.org/10.1039/d2nj02052a

    Article  CAS  Google Scholar 

  24. Sobarzo PA, Tundidor A, Sanz-Perez ES, Terraza CA, Maya EM (2022) Effect of thiophene, furan moieties and zinc ions on melamine-based porous polyaminals properties and catalytic activity on CO2 cycloaddition reaction. Eur Polym J 177:111444. https://doi.org/10.1016/j.eurpolymj.2022.111444

    Article  CAS  Google Scholar 

  25. Chen J, Zhao PP, Li DD, Liu L, Li H (2020) Achieving the transformation of captured CO2 to cyclic carbonates catalyzed by a bipyridine copper complex-intercalated porous organic framework. Ind Eng Chem Res 59:9423–9431. https://doi.org/10.1021/acs.iecr.0c00874

    Article  CAS  Google Scholar 

  26. Wang YC, Liu YF, Su Q et al (2022) Poly (ionic liquid) materials tailored by carboxyl groups for the gas phase-conversion of epoxide and CO2 into cyclic carbonates. J CO2 Util 60:101976

    Article  CAS  Google Scholar 

  27. Ma LJ, Su ZP, Wang N, Li J (2023) A pyridinium-pyridinium zinc (II) porphyrin ion porous organic polymer as efficient heterogeneous catalyst for cycloaddition of epoxides with CO2. Eur J Inorg Chem 26:e00744. https://doi.org/10.1002/ejic.202200744

    Article  CAS  Google Scholar 

  28. Cai HS, Chen JJ, Cai KX, Liu F, Zhao TX (2023) N-doped porous polymer with protonated ionic liquid sites for efficient conversion of CO2 to cyclic carbonates. Micropor Mesopor Mat 350:112447. https://doi.org/10.1016/j.micromeso.2023.112447

    Article  CAS  Google Scholar 

  29. Kozlovskiy AL, Shlimas DI, Zdorovets MV (2021) Synthesis, structural properties and shielding efficiency of glasses based on TeO2 -(1–x)ZnO-xSm2O3. J Mater Sci-Mater El 32:12111–12120. https://doi.org/10.1007/s10854-021-05839-0

    Article  CAS  Google Scholar 

  30. Guo Y, Zhou D, Li D et al (2023) Improved energy storage performance of sandwich-structured P(VDF-HFP)-based nanocomposites by the addition of inorganic nanoparticles. J Mater Chem C 11:6999–7009. https://doi.org/10.1039/d3tc00979c

    Article  CAS  Google Scholar 

  31. Liu LN, Jayakumar S, Chen J, Tao L, Li H, Yang QH, Li C (2021) Synthesis of bifunctional porphyrin polymers for catalytic conversion of dilute CO2 to cyclic carbonates. ACS Appl Mater Interfaces 13:29522–29531. https://doi.org/10.1021/acsami.1c04624

    Article  CAS  Google Scholar 

  32. Wang JJ, Wang XL, Deng YL, Wu TT, Chen JQ, Liu J, Xu L, Zang Y (2023) Preparation of an electron-rich polyimide-based hypercrosslinked polymer for high-efficiency and reversible iodine capture. Polymer 267:125665. https://doi.org/10.1016/j.polymer.2022.125665

    Article  CAS  Google Scholar 

  33. Tian Y, Liu LJ, Ma FQ, Zhu XY, Dong HX, Zhang CH, Zhao FB (2021) Synthesis of phosphorylated hyper-cross-linked polymers and their efficient uranium adsorption in water. J Hazard Mater 419:126538. https://doi.org/10.1016/j.jhazmat.2021.126538

    Article  CAS  Google Scholar 

  34. Mei DC, Li H, Liu LJ, Jiang LC, Zhang CH, Wu XR, Dong HX, Ma FQ (2021) Efficient uranium adsorbent with antimicrobial function: oxime functionalized ZIF-90. Chem Eng J 425:130468. https://doi.org/10.1016/j.cej.2021.130468

    Article  CAS  Google Scholar 

  35. Liu XY, Zhou FR, Chen M, Xu W, Liu HB, Zhong JJ, Luo RC (2021) Synergistically converting carbon dioxide into cyclic carbonates by metalloporphyrin-based cationic polymers with imidazolium functionality. Chem Select 6:583–588. https://doi.org/10.1002/slct.202004338

    Article  CAS  Google Scholar 

  36. Chen M, Liu XY, Yang YY, Xu W, Chen KC, Luo RC (2023) Yang Y, Aluminum porphyrin-based ionic porous aromatic frameworks having high surface areas and highly dispersed dual-function sites for boosting the catalytic conversion of CO2 into cyclic carbonates. ACS Appl Mater Interfaces 15:8263–8274. https://doi.org/10.1021/acsami.2c22824

    Article  CAS  Google Scholar 

  37. Huang K, Liu FJ, Dai S (2016) Solvothermal synthesis of hierarchically nanoporous organic polymers with tunable nitrogen functionality for highly selective capture of CO2. J Mater Chem A 4:13063–13070. https://doi.org/10.1039/c6ta04851j

    Article  CAS  Google Scholar 

  38. Zhou Y, Cai MZ, Shu XJ, Xu ZH, Zhou LS, Wu XK (2022) Facilely synthesized meso-macroporous organic polymers with tunable nitrogen functionality for highly efficient, selective and reversible capture of sulfur dioxide. Chem Eng J 435:134876. https://doi.org/10.1016/j.cej.2022.134876

    Article  CAS  Google Scholar 

  39. Wu QJ, Mao MJ, Chen JX, Huang YB, Cao R (2020) Integration of metalloporphyrin into cationic covalent triazine frameworks for the synergistically enhanced chemical fixation of CO2. Catal Sci Technol 10:8026–8033. https://doi.org/10.1039/d0cy01636e

    Article  CAS  Google Scholar 

  40. Ma KY, Li JX, Liu JL et al (2023) Covalent triazine framework featuring single electron Co2+ centered in intact porphyrin units for efficient CO2 photoreduction. Appl Surf Sci 629:157453. https://doi.org/10.1016/j.apsusc.2023.157453

    Article  CAS  Google Scholar 

  41. Zou YZ, Ge YS, Zhang Q, Liu W, Li XG, Chen GE, Ke HZ (2022) Polyamine-functionalized imidazolyl poly (ionic liquid)s for the efficient conversion of CO2 into cyclic carbonates. Catal Sci Technol 12:273–281. https://doi.org/10.1039/d1cy01765a

    Article  CAS  Google Scholar 

  42. Xu W, Chen M, Yang YY, Chen KC, Li YY, Zhang ZX, Luo RC (2023) Construction of aluminum-porphyrin-based hypercrosslinked ionic polymers (HIPs) by direct knitting approach for CO2 capture and in-situ conversion to cyclic carbonates. ChemCatChem 15:01441. https://doi.org/10.1002/cctc.202201441

    Article  CAS  Google Scholar 

  43. Li J, Jia DG, Guo ZJ, Liu YQ, Liu YN, Zhou Y, Wang J (2017) Imidazolinium based porous hypercrosslinked ionic polymers for efficient CO2 capture and fixation with epoxides. Green Chem 19:2675–2686. https://doi.org/10.1039/c7gc00105c

    Article  CAS  Google Scholar 

  44. Li J, Wang XC, Chen GJ, Li DF, Zhou Y, Yang XN, Wang J (2015) Hypercrosslinked organic polymer based carbonaceous catalytic materials: Sulfonic acid functionality and nano-confinement effect. Appl Catal B-environ 176:718–730. https://doi.org/10.1016/j.apcatb.2015.04.054

    Article  CAS  Google Scholar 

  45. Yang Y, Wang Q, Su ZP, Li J, Wang N (2023) Benzimidazolium-decorated metalloporphyrin molecule and polymer: a reliable preparation method and application in catalyzing the cycloaddition reaction of CO2 and epoxides. Eur J Inorg Chem 26:e00776. https://doi.org/10.1002/ejic.202200776

    Article  CAS  Google Scholar 

  46. Liao X, Wang ZY, Li ZH, Kong LZ, Tang WF, Qin ZD, Lin JQ (2023) Tailoring hypercrosslinked ionic polymers with high ionic density for rapid conversion of CO2 into cyclic carbonates at low pressure. Chem Eng J 471:144455. https://doi.org/10.1016/j.cej.2023.144455

    Article  CAS  Google Scholar 

  47. Ganesan V, Yoon S (2019) Hyper-cross-linked porous porphyrin aluminum (III) tetracarbonylcobaltate as a highly active heterogeneous bimetallic catalyst for the ring-expansion carbonylation of epoxides. ACS Appl Mater Interfaces 11:18609–18616. https://doi.org/10.1021/acsami.9b02468

    Article  CAS  Google Scholar 

  48. Cai KX, Liu P, Zhao TX, Su K, Yang Y, Tao DJ (2022) Construction of hyper-crosslinked ionic polymers with high surface areas for effective CO2 capture and conversion. Micropor Mesopor Mat 343:112135. https://doi.org/10.1016/j.micromeso.2022.112135

    Article  CAS  Google Scholar 

  49. Trukhanov SV (2005) Peculiarities of the magnetic state in the system La0.70Sr0.30MnO3-γ(0≤γ≤0.25). J Exp Theor Phys 100:95–105. https://doi.org/10.1134/1.1866202

    Article  CAS  Google Scholar 

  50. Kozlovskiy A, Egizbek K, Zdorovets MV, Ibragimova M, Shumskaya A, Rogachev AA, Ignatovich ZV, Kadyrzhanov K (2020) Evaluation of the efficiency of detection and capture of manganese in aqueous solutions of FeCeOx nanocomposites doped with Nb2O5. Sensors 20:4851. https://doi.org/10.3390/s20174851

    Article  CAS  Google Scholar 

  51. Xu L, Cui J, Gao S et al (2022) Synthesis of Pd-stabilized chiral conjugated microporous polymer composites as high efficiency heterogeneous asymmetric Henry reaction catalysts. Micropor Mesopor Mat 341:112075. https://doi.org/10.1016/j.micromeso.2022.112075

    Article  CAS  Google Scholar 

  52. Zang Y, Gao S, Jing BY, Sun H, Wang JJ, Liu J, Miao FJ, Xu L (2023) Synthesis of Pd/conjugated microporous polymer heterogeneous catalysts via imine groups and high catalytic efficiency on Suzuki-Miyaura coupling reaction. J Mater Sci 58:170–185. https://doi.org/10.1007/s10853-022-08032-8

    Article  CAS  Google Scholar 

  53. Zang Y, Sun H, Jing BY et al (2023) Efficient superhydrophobic and flame retardant oil/water separation conjugated microporous polymer-coated sponges. J Mater Sci 58:2935–2949. https://doi.org/10.1007/s10853-022-08126-3

    Article  CAS  Google Scholar 

  54. Ding LG, Yao BJ, Wu WX, Yu ZG, Wang XY, Kan JL, Dong YB (2021) Metalloporphyrin and ionic liquid-functionalized covalent organic frameworks for catalytic CO2 cycloaddition via visible-light-induced photothermal conversion. Inorg Chem 60:12591–12601. https://doi.org/10.1021/acs.inorgchem.1c01975

    Article  CAS  Google Scholar 

  55. Li T, Chen MH, Shi Q, Xiong J, Feng YQ, Zhang B (2023) A one-pot synthesis of pyridinium-based ionic porous organic polymers for efficient CO2 catalytic conversion. New J Chem 47:4239–4244. https://doi.org/10.1039/d2nj05972j

    Article  CAS  Google Scholar 

  56. Wang X, Yang L, Chen YL, Yang CK, Lan JW, Sun JM (2020) Metal-free triazine-incorporated organosilica framework catalyst for the cycloaddition of CO2 to epoxide under solvent-free conditions. Ind Eng Chem Res 59:21018–21027. https://doi.org/10.1021/acs.iecr.0c04466

    Article  CAS  Google Scholar 

  57. Zhang YD, Liu K, Wu L et al (2019) Silanol-enriched viologen-based ionic porous hybrid polymers for efficient catalytic CO2 fixation into cyclic carbonates under mild conditions. ACS Sustainable Chem Eng 7:16907–16916. https://doi.org/10.1021/acssuschemeng.9b04627

    Article  CAS  Google Scholar 

  58. Du J, Ouyang H, Tan B (2021) Porous organic polymers for catalytic conversion of carbon dioxide. Chem-Asian J 16:3833–3850. https://doi.org/10.1002/asia.202100991

    Article  CAS  Google Scholar 

  59. Yang YL, Guo YL, Yuan JL, Xie HB, Gao CT, Zhao TX, Zheng Q (2022) Agile construction of porous organic frameworks pending carboxylic acids and imidazolium-based ionic liquids for the efficient fixation of CO2 to cyclic carbonates. ACS Sustain Chem Eng 10:7990–8001. https://doi.org/10.1021/acssuschemeng.2c01660

    Article  CAS  Google Scholar 

  60. Cai KX, Liu P, Chen Z, Chen P, Liu F, Zhao TX, Tao DJ (2023) Construction of bifunctional triazine-based imidazolium porous ionomer polymers by a post-crosslinking tactic for efficient CO2 capture and conversion. Chem Eng J 451:138946. https://doi.org/10.1016/j.cej.2022.138946

    Article  CAS  Google Scholar 

  61. Liu MS, Gao KQ, Liang L, Sun JM, Sheng L, Arai M (2016) Experimental and theoretical insights into binary Zn-SBA-15/KI catalysts for the selective coupling of CO2 and epoxides into cyclic carbonates under mild conditions. Catal Sci Technol 6:6406–6416. https://doi.org/10.1039/c6cy00725b

    Article  CAS  Google Scholar 

  62. De Almeida BW, Milani JLS, de Jesus Franco CH, Martins FT, de Fátima Â, da Mata ÁFA, das Chagas RP (2022) Bis-benzimidazolium salts as bifunctional organocatalysts for the cycloaddition of CO2 with epoxides. Mol Catal 530:112632. https://doi.org/10.1016/j.mcat.2022.112632

    Article  CAS  Google Scholar 

  63. Guo ZJ, Cai XC, Xie JY, Wang XC, Zhou Y, Wang J (2016) Hydroxyl-exchanged nanoporous ionic copolymer toward low-temperature cycloaddition of atmospheric carbon dioxide into carbonates. ACS Appl Mater Interfaces 8:12812–12821. https://doi.org/10.1021/acsami.6b02461

    Article  CAS  Google Scholar 

  64. Wang JQ, Zhang YG (2016) Boronic acids as hydrogen bond donor catalysts for efficient conversion of CO2 into organic carbonate in water. ACS Catal 6:4871–4876. https://doi.org/10.1021/acscatal.6b01422

    Article  CAS  Google Scholar 

  65. Li J, Han YL, Ji T, Wu NH, Lin H, Jiang J, Zhu JH (2019) Porous metallosalen hypercrosslinked ionic polymers for cooperative CO2 cycloaddition conversion. Ind Eng Chem Res 59:676–684. https://doi.org/10.1021/acs.iecr.9b05304

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key research and development guidance projects in Heilongjiang province (grant number GZ(2021)0034); the Opening Foundation of Heilongjiang Province Key Laboratory of Polymeric Composition material (CLKFKT(2021)B6); the National Natural Science Foundation of China (grant number 52173202); and the Heilongjiang Science Foundation Project (grant number YQ(2022)E043). The Spartan software used for the calculation was provided by Prof. Toshiki Aoki, Niigata University, Japan.

Author information

Authors and Affiliations

Authors

Contributions

JC did the experiment and investigation; JW was involved in conceptualization and writing, reviewing and editing; DL helped with the experiment and data analysis; ZS contributed to software and funding acquisition; JL edited the manuscript and analyzed the data; LX participated in writing, reviewing and editing; and YZ was responsible for supervision and drafting revision.

Corresponding authors

Correspondence to Jianjun Wang or Yu Zang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2132 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Chen, J., Li, D. et al. A novel bifunctional metalloporphyrin-based hyper-crosslinked ionic polymer as heterogeneous catalyst for efficiently converting CO2 into cyclic carbonates. J Mater Sci 59, 1235–1252 (2024). https://doi.org/10.1007/s10853-023-09280-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09280-y

Navigation