Skip to main content
Log in

Green Synthesis of Cyclic Carbonates from Epoxides and CO2 Using Transition Metal Substituted Polyoxometalate-PDDA Hybrid Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Polyoxometalates can be tuned for specific catalytic property by substituting transition metal ions. We report the synthesis of hybrid materials of Cu2+, Co2+ and Ni2+ substituted phosphotungstates and poly(diallyldimethylammonium) chloride polymer (PDDA) for CO2 fixation. The in situ generated transition metal substituted polyoxometalates (TMS-POMs) are analyzed by FTIR, powder XRD, 31P NMR and SEM techniques. The hybrid TMS-POM materials are found to be good catalysts for converting epoxides to cyclic carbonates. Among these, PDDA-PWCo is the most efficient catalyst for cycloaddition of CO2 under solvent-free conditions at room temperature in shortest reaction time. Only 0.2 mol% of PDDA-PWCo is enough to deliver 100% conversion and selectivity to cyclic carbonates. This catalytic approach is employed for conversion of other cyclic, acyclic, and aromatic epoxides without using column purifications. Overall, the method of obtaining cyclic carbonates under green conditions using TMS-POMs-PDDA hybrid materials appears suitable for industrial applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Chart 1
Scheme. 1
Chart 2
Scheme 2

Similar content being viewed by others

References

  1. Truong CC, Mishra DK (2020) Environ Chem Lett 19:911–940. https://doi.org/10.1007/s10311-020-01121-7

    Article  CAS  Google Scholar 

  2. Osman AI, Hefny M, Abdel Maksoud MIA, Elgarahy AM, Rooney DW (2020) Environ Chem Lett 19:797–849. https://doi.org/10.1007/s10311-020-01133-3

    Article  CAS  Google Scholar 

  3. Peng J, Geng Y, Yang HJ, He W, Wei Z, Yang J, Guo C-Y (2017) Mol Catal 432:37–46. https://doi.org/10.1016/j.mcat.2017.01.019

    Article  CAS  Google Scholar 

  4. Chen X, Liu Y, Wu J (2020) Mol Catal 483:110716. https://doi.org/10.1016/j.mcat.2019.110716

    Article  CAS  Google Scholar 

  5. Corma A, Garcia H (2013) J Catal 308:168–175. https://doi.org/10.1016/j.jcat.2013.06.008

    Article  CAS  Google Scholar 

  6. Zhang YY, Yang GW, Xie R, Yang L, Li B, Wu GP (2020) Angew Chem Int Ed 59:23291–23298. https://doi.org/10.1002/anie.202010651

    Article  CAS  Google Scholar 

  7. Lang X-D, He LN (2016) Chem Rec 16:1337–1352. https://doi.org/10.1002/tcr.201500293

    Article  CAS  PubMed  Google Scholar 

  8. Zhai G, Liu Y, Lei L, Wang J, Wang Z, Zheng Z, Wang P, Cheng H, Dai Y, Huang B (2021) ACS Catal 11:1988–1994. https://doi.org/10.1021/acscatal.0c05145

    Article  CAS  Google Scholar 

  9. Miao CX, Wang JQ, Wu Y, Du Y, He LN (2008) Chemsuschem 1:236–241. https://doi.org/10.1002/cssc.200700133

    Article  CAS  PubMed  Google Scholar 

  10. Cao JP, Xue YS, Li NF, Gong JJ, Kang RK, Xu Y (2006). J Am Chem Soc. https://doi.org/10.1201/9781420015751

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mizuno N, Kamata K, Yamaguchi K (2006) Surface and Nanomolecular Catalysis. In: Richards Ryan (ed) Liquid-phase oxidations catalysed by polyoxometalates. CRC Press Taylor and Francis, Boca Raton, pp 463–492

    Google Scholar 

  12. Chen F, Li X, Wang B, Xu T, Chen SL, Liu P, Hu C (2012) Chem Eur J 18:9870–9876. https://doi.org/10.1002/chem.201201042

    Article  CAS  PubMed  Google Scholar 

  13. Wang Y, Wu Z, Yu H, Han S, Wei Y (2020) Green Chem 22:3150–3154. https://doi.org/10.1039/d0gc00388c

    Article  CAS  Google Scholar 

  14. Yu B, Zou B, Hu CW (2018) J CO2Util 26:314–322. https://doi.org/10.1016/j.jcou.2018.05.021

    Article  CAS  Google Scholar 

  15. Wang SS, Yang GY (2015) Chem Rev 115:4893–4962. https://doi.org/10.1021/cr500390v

    Article  CAS  PubMed  Google Scholar 

  16. Miras HN, Yan J, Long DL, Cronin L (2012) Chem Soc Rev 41:7403. https://doi.org/10.1039/c2cs35190k

    Article  CAS  PubMed  Google Scholar 

  17. Pattnaik F, Tripathi S, Patra BR, Nanda S, Kumar V, Dalai AK, Naik S (2021) Environ Chem Lett 19:4119–4136. https://doi.org/10.1007/s10311-021-01284-x

    Article  CAS  Google Scholar 

  18. Long DL, Tsunashima R, Cronin L (2010) Angew Chem Int Ed 49:1736–1758. https://doi.org/10.1002/anie.200902483

    Article  CAS  Google Scholar 

  19. Nsouli NH, Ismail AH, Helgadottir IS, Dickman MH, Clemente-Juan JM, Kortz U (2009) Inorg Chem 48:5884–5890. https://doi.org/10.1021/ic900180x

    Article  CAS  PubMed  Google Scholar 

  20. Xiao Y, Chen D, Ma N, Hou Z, Hu M, Wang C, Wang W (2013) RSC Adv 3:21544. https://doi.org/10.1039/c3ra43373k

    Article  ADS  CAS  Google Scholar 

  21. Qi W, Wu L (2009) Polym Int 58:1217–1225. https://doi.org/10.1002/pi.2654

    Article  CAS  Google Scholar 

  22. Chen H, Wang Y, Dong S (2007) Inorg Chem 46:10587–10593. https://doi.org/10.1021/ic7009572

    Article  CAS  PubMed  Google Scholar 

  23. Ge W, Wang X, Zhang L, Du L, Zhou Y, Wang J (2016) Catal Sci Technol 6:460–467. https://doi.org/10.1039/c5cy01038a

    Article  CAS  Google Scholar 

  24. Zhao YQ, Liu YY, Ma JF (2020) Cryst Growth Des 21:1019–1027. https://doi.org/10.1021/acs.cgd.0c01353

    Article  CAS  Google Scholar 

  25. Shakeela K, Sinduri VL, Ranga Rao G (2017) Polyhedron 137:43–51. https://doi.org/10.1016/j.poly.2017.07.023

    Article  CAS  Google Scholar 

  26. Shakeela K, Ranga Rao G (2018) ACS Appl Nano Mater 1:4642–4651. https://doi.org/10.1021/acsanm.8b00920

    Article  CAS  Google Scholar 

  27. Houston JE, Patterson AR, Jayasundera AC, Schmitt W, Evans RC (2014) Chem Commun 50:5233–5235. https://doi.org/10.1039/c3cc47552b

    Article  CAS  Google Scholar 

  28. Zhao W, Yang C, Cheng Z, Zhang Z (2016) Green Chem 18:995–998. https://doi.org/10.1039/c5gc02527c

    Article  CAS  Google Scholar 

  29. Shakeela K, Guru S, Ranga Rao G (2020). J Chem Sci. https://doi.org/10.1007/s12039-020-01804-2

    Article  Google Scholar 

  30. Han F, Li H, Zhuang H, Hou Q, Yang Q, Zhang B, Miao C (2021) J CO2 Util 53:101742. https://doi.org/10.1016/j.jcou.2021.101742

    Article  CAS  Google Scholar 

  31. Simões MMQ, Conceição CMM, Gamelas JAF, Domingues PMDN, Cavaleiro AMV, Cavaleiro JAS, Ferrer-Correia AJV, Johnstone RAW (1999) J Mol Catal A Chem 144:461–468. https://doi.org/10.1016/s1381-1169(99)00025-4

    Article  Google Scholar 

  32. Zhang Q, An Q, Luan X, Huang H, Li X, Meng Z, Tong W, Chen X, Chu PK, Zhang Y (2015) Nanoscale 7:14002–14009. https://doi.org/10.1039/c5nr03256c

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Rajkumar T, Ranga Rao G (2009) J Chem Sci 120:587–594. https://doi.org/10.1007/s12039-008-0089-x

    Article  Google Scholar 

  34. Levine DJ, Stöhr J, Falese LE, Ollesch J, Wille H, Prusiner SB, Long JR (2015) ACS Chem Biol 10:1269–1277. https://doi.org/10.1021/cb5006239

    Article  CAS  PubMed  Google Scholar 

  35. Patel K, Shringarpure P, Patel A (2010) Transit Met Chem 36:171–177. https://doi.org/10.1007/s11243-010-9450-2

    Article  CAS  Google Scholar 

  36. Lu X-B, Wang Y (2004) Angew Chem Int Ed 43:3574–3577. https://doi.org/10.1002/anie.200453998

    Article  CAS  Google Scholar 

  37. Singh C, Mukhopadhyay S, Das S (2018) Inorg Chem 57:6479–6490. https://doi.org/10.1021/acs.inorgchem.8b00541

    Article  CAS  PubMed  Google Scholar 

  38. Mulkapuri S, Ravi A, Das S (2022) Chem Mater 34:3624–3636. https://doi.org/10.1021/acs.chemmater.1c03917

    Article  CAS  Google Scholar 

  39. Zalomaeva OV, Chibiryaev AM, Kovalenko KA, Kholdeeva OA, Balzhinimaev BS, Fedin VP (2013) J Catal 298:179–185. https://doi.org/10.1016/j.jcat.2012.11.029

    Article  CAS  Google Scholar 

  40. Das SK, Chatterjee S, Bhunia S, Mondal A, Mitra P, Kumari V, Pradhan A, Bhaumik A (2017) Dalton Trans 46:13783–13792. https://doi.org/10.1039/c7dt02040f

    Article  CAS  PubMed  Google Scholar 

  41. Cheng W, Xue Y, Luo X-M, Xu Y (2018) Chem Commun 54:12808–12811. https://doi.org/10.1039/c8cc07041e

    Article  CAS  Google Scholar 

  42. Jia J, Niu Y, Zhang P, Zhang D, Ma P, Zhang C, Niu J, Wang J (2017) Inorg Chem 56:10131–10134. https://doi.org/10.1021/acs.inorgchem.7b01231

    Article  CAS  PubMed  Google Scholar 

  43. Lu J, Ma X, Singh V, Zhang Y, Wang P, Feng J, Ma P, Niu J, Wang J (2018) Inorg Chem 57:14632–14643. https://doi.org/10.1021/acs.inorgchem.8b02321

    Article  CAS  PubMed  Google Scholar 

  44. Szczepankiewicz SH, Ippolito CM, Santora BP, Van de Ven TJ, Ippolito GA, Fronckowiak L, Wiatrowski F, Power T, Kozik M (1998) Inorg Chem 37:4344–4352. https://doi.org/10.1021/ic980162k

    Article  CAS  PubMed  Google Scholar 

  45. Khenkin AM, Efremenko I, Weiner L, Martin JML, Neumann R (2010) Chem Eur J 16:1356–1364. https://doi.org/10.1002/chem.200901673

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

RJ would like to express gratitude to Prof. Ranga Rao for providing research facilites to carry out this work in DSEHC-Solar Fuels Laboratory at IIT Madras. DSEHC is supported by Department of Science and Technology, Government of India through Grant No. DST/TMD/SERI/HUB/1(C). RJ, CAB, RRS and KS acknowledge BSACIST for research faciltites for a part of this work.

Author information

Authors and Affiliations

Authors

Contributions

RJ, CAB: material preparation, data collection, early draft and analysis; RRS: study conception; KS: materials design; RRS and KS: study design, monitoring, data analysis, manuscript draft preparation, editing; GRR: Funding, study design, monitoring and final editing.

Corresponding authors

Correspondence to K. Shakeela or Rafik Rajjak Shaikh.

Ethics declarations

Conflict of interest

The authors have no relevant conflicts of interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10175 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jan, R., Biji, C.A., Shakeela, K. et al. Green Synthesis of Cyclic Carbonates from Epoxides and CO2 Using Transition Metal Substituted Polyoxometalate-PDDA Hybrid Catalysts. Catal Lett 154, 1631–1641 (2024). https://doi.org/10.1007/s10562-023-04392-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04392-1

Keywords

Navigation