Skip to main content
Log in

Effect of various morphologies and dopants on piezoelectric and detection properties of ZnO at the nanoscale: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Zinc oxide as a nanomaterial has proven to be a powerful technology in the fields of engineering and medicine, where it has an array of applications. It is environment-friendly, cost-effective, and biocompatible and thus proves to be a better alternative than other existing materials. ZnO nanoparticles have many physical applications in various sensing and regulating devices due to their highly tunable morphological and electrical properties. Out of the many physical properties that ZnO NPs possess, the current review focuses only on their piezoelectric properties and draws a comparison between different dopants and morphological modifications on the piezo-response of ZnO. Over the last few years, there has been a rapid shift toward using NPs for various biomedical applications which includes delivery of a drug, photoablation therapy, bioimaging, and biosensing. Due to the unique structure of ZnO, its low toxicity and ability to produce a good amount of reactive oxygen species, it has scope for numerous applications in the biomedical field. The data obtained for different analytes and their detection using doped ZnO NPs clearly indicate their efficacy in the biomedical fields. ZnO NPs prepared via green synthesis, i.e., by using phytochemicals, are eco-friendly and produce better results. Green synthesis of ZnO NPs has also resolved the issue of using non-recyclable or non-degradable raw materials and synthesis of toxic by-products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Adopted from Ref. [148]. Copyright © 2020 by Springer Nature

Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Fischer C, Salant SW (2017) Balancing the carbon budget for oil: the distributive effects of alternative policies. Eur Econ Rev 99:191–215. https://doi.org/10.1016/j.euroecorev.2017.04.003

    Article  Google Scholar 

  2. Chodankar N, Padwal C, Pham HD et al (2021) Piezo-supercapacitors: a new paradigm of self-powered wellbeing and biomedical devices. Nano Energy 90:106607. https://doi.org/10.1016/J.NANOEN.2021.106607

    Article  CAS  Google Scholar 

  3. Kim T, Ko Y, Yoo C et al (2020) Design optimization of wide-band piezoelectric energy harvesters for self-powered devices. Energy Convers Manag 225(1):13443. https://doi.org/10.1016/J.ENCONMAN.2020.113443

    Article  Google Scholar 

  4. Bian J, Wang N, Ma J et al (2018) Stretchable 3D polymer for simultaneously mechanical energy harvesting and biomimetic force sensing. Nano Energy 47:442–450. https://doi.org/10.1016/J.NANOEN.2018.03.027

    Article  CAS  Google Scholar 

  5. Zhou Q, Park JG, Kim KN et al (2018) Transparent-flexible-multimodal triboelectric nanogenerators for mechanical energy harvesting and self-powered sensor applications. Nano Energy 48:471–480. https://doi.org/10.1016/J.NANOEN.2018.03.074

    Article  CAS  Google Scholar 

  6. Liu W, Qin G, Zhu Q, Hu G (2018) Synchronous extraction circuit with self-adaptive peak-detection mechanical switches design for piezoelectric energy harvesting. Appl Energy 230:1292–1303. https://doi.org/10.1016/J.APENERGY.2018.09.051

    Article  Google Scholar 

  7. Sun Y, Zheng Y, Wang R, Fan J, Liu Y (2021) Direct-current piezoelectric nanogenerator based on two-layer zinc oxide nanorod arrays with equal c-axis orientation for energy harvesting. Chem Eng J 426:131262. https://doi.org/10.1016/J.CEJ.2021.131262

    Article  CAS  Google Scholar 

  8. Gasga JR, Mentle MG, Brès E et al (2020) Detection of the piezoelectricity effect in nanocrystals from human teeth. J Phys Chem Solids 136:109140. https://doi.org/10.1016/J.JPCS.2019.109140

    Article  Google Scholar 

  9. Sinar D, Knopf GK (2020) Disposable piezoelectric vibration sensors with PDMS/ZnO transducers on printed graphene-cellulose electrodes. Sens Actuators A Phys 302:111800. https://doi.org/10.1016/J.SNA.2019.111800

    Article  CAS  Google Scholar 

  10. Carvalho E, Fernandes L, Costa CM, Lanceros-Méndez S (2021) Piezoelectric polymer composites for sensors and actuators. Encycl Mater Compos 2:473–486. https://doi.org/10.1016/B978-0-12-819724-0.00005-7

    Article  Google Scholar 

  11. Wang S, Rong W, Wang L, Xie H, Sun MJK (2019) A survey of piezoelectric actuators with long working stroke in recent years: classifications, principles, connections, and distinctions. Mech Syst Signal Process 123:591–605. https://doi.org/10.1016/J.YMSSP.2019.01.033

    Article  Google Scholar 

  12. Quinsaat JEQ, de-Wild T, Nüesch FA et al (2020) Stretchable piezoelectric elastic composites for sensors and energy generators. Compos Part B Eng 198:108211. https://doi.org/10.1016/J.COMPOSITESB.2020.108211

    Article  CAS  Google Scholar 

  13. De-Jong M, Chen W, Geerlings H, Asta M, Persson KA (2015) A database to enable discovery and design of piezoelectric materials. Sci Data 2:1–13. https://doi.org/10.1038/sdata.2015.53

    Article  CAS  Google Scholar 

  14. Zhou Y, Chen W, Yang J, Du J (2011) Thickness-shear vibration of a quartz plate connected to piezoelectric plates and electric field sensing. Ultrasonics 51(2):131–135. https://doi.org/10.1016/J.ULTRAS.2010.07.002

    Article  CAS  Google Scholar 

  15. Kawamata A, Hosaka H, Morita T (2007) Non-hysteresis and perfect linear piezoelectric performance of a multilayered lithium niobate actuator. Sens Actuators A 135(2):782–786. https://doi.org/10.1016/J.SNA.2006.08.025

    Article  CAS  Google Scholar 

  16. Moina AP (2012) Piezoelectric resonance in Rochelle salt: the contribution of diagonal strains. Phys B 407(23):4550–4556. https://doi.org/10.1016/J.PHYSB.2012.08.017

    Article  CAS  Google Scholar 

  17. Guo J, Zhou H, Fan T et al (2020) Improving electrical properties and toughening of PZT-based piezoelectric ceramics for high-power applications via doping rare-earth oxides. J Market Res 9(6):14254–14266. https://doi.org/10.1016/J.JMRT.2020.10.022

    Article  CAS  Google Scholar 

  18. Shin DJ, Jeong SJ, Seo CE et al (2015) Multi-layered piezoelectric energy harvesters based on PZT ceramic actuators. Ceram Int 41(1):686–690. https://doi.org/10.1016/J.CERAMINT.2015.03.180

    Article  Google Scholar 

  19. Daneshpajooh H, Park Y, Scholehwar T, Hennig E, Uchino K (2020) DC bias electric field and stress dependence of piezoelectric parameters in lead zirconate titanate ceramics – Phenomenological approach. Ceram Int 46(10):15572–15580. https://doi.org/10.1016/J.CERAMINT.2020.03.104

    Article  CAS  Google Scholar 

  20. Liu J, Gu H, Liu Q, Ren L, Li G (2019) An intelligent material for tissue reconstruction: the piezoelectric property of polycaprolactone/barium titanate composites. Mater Lett 236:686–689. https://doi.org/10.1016/J.MATLET.2018.11.036

    Article  CAS  Google Scholar 

  21. Ferri A, Barrau S, Bourez R, da-Costa A et al (2020) Probing the local piezoelectric behavior in stretched barium titanate/poly (vinylidene fluoride) nanocomposites. Compos Sci Technol 186:107914. https://doi.org/10.1016/J.COMPSCITECH.2019.107914

    Article  CAS  Google Scholar 

  22. Lu L, Ding W, Liu J, Yang B (2020) Flexible PVDF based piezoelectric nanogenerators. Nano Energy 78:105251. https://doi.org/10.1016/J.NANOEN.2020.105251

    Article  CAS  Google Scholar 

  23. Chamankar N, Khajavi R, Yousefi AA, Rashidi A, Golestanifard F (2020) A flexible piezoelectric pressure sensor based on PVDF nanocomposite fibers doped with PZT particles for energy harvesting applications. Ceram Int 46(12):19669–19681. https://doi.org/10.1016/J.CERAMINT.2020.03.210

    Article  CAS  Google Scholar 

  24. Koç M, Paral L, Şan O (2020) Fabrication and vibrational energy harvesting characterization of flexible piezoelectric nanogenerator (PEN) based on PVDF/PZT. Polym Test 90:106695. https://doi.org/10.1016/J.POLYMERTESTING.2020.106695

    Article  Google Scholar 

  25. Lee SJ, Arun AP, Kim KJ (2015) Piezoelectric properties of electro spun poly (l-lactic acid) nanofiber web. Mater Lett 148:58–62. https://doi.org/10.1016/J.MATLET.2015.02.038

    Article  CAS  Google Scholar 

  26. Pan R, Xuan W, Chen J et al (2018) Fully biodegradable triboelectric nanogenerators based on electro spun polylactic acid and nanostructured gelatin films. Nano Energy 45:193–202. https://doi.org/10.1016/J.NANOEN.2017.12.048

    Article  CAS  Google Scholar 

  27. Goel S, Kumar B (2020) A review on piezo-/ferro-electric properties of morphologically diverse ZnO nanostructures. J Alloys Compd 816:152491. https://doi.org/10.1016/J.JALLCOM.2019.152491

    Article  CAS  Google Scholar 

  28. Manjula Y, Kumar R, Swarup Raju PM et al (2020) Piezoelectric flexible nanogenerator based on ZnO nanosheet networks for mechanical energy harvesting. Chem Phys 533:110699. https://doi.org/10.1016/J.CHEMPHYS.2020.110699

    Article  CAS  Google Scholar 

  29. Choi HJ, Jung YS, Han J, Cho YS (2020) In-situ stretching strain-driven high piezoelectricity and enhanced electromechanical energy-harvesting performance of a ZnO nanorod-array structure. Nano Energy 72:104735. https://doi.org/10.1016/J.NANOEN.2020.104735

    Article  CAS  Google Scholar 

  30. Qin W, Li T, Li Y et al (2016) A high power ZnO thin film piezoelectric generator. Appl Surf Sci 364:670–675. https://doi.org/10.1016/J.APSUSC.2015.12.178

    Article  CAS  Google Scholar 

  31. Dindar B, Güler AC (2018) Comparison of facile synthesized N doped, B doped and undoped ZnO for the photocatalytic removal of Rhodamine B. Environ Nanotechnol Monit Manag 10:457–466. https://doi.org/10.1016/J.ENMM.2018.09.001

    Article  Google Scholar 

  32. Zhu D, Hu T, Zhao Y et al (2015) High-performance self-powered/active humidity sensing of Fe-doped ZnO nanoarray nanogenerator. Sens Actuators B Chem 213:382–389. https://doi.org/10.1016/J.SNB.2015.02.119

    Article  CAS  Google Scholar 

  33. Aabid A, Raheman A, Ibrahim YE et al (2021) A systematic review of piezoelectric materials and energy harvesters for industrial applications. Sensors 21:4145. https://doi.org/10.3390/s21124145

    Article  CAS  Google Scholar 

  34. Dai S, Park HS (2013) Surface effects on the piezoelectricity of ZnO nanowires. J Mech Phys Solids 61(2):385–397. https://doi.org/10.1016/J.JMPS.2012.10.003

    Article  CAS  Google Scholar 

  35. Wang ZL (2012) Progress in piezotronics and piezo-phototronics. Adv Mater 24(34):4632–4646. https://doi.org/10.1002/ADMA.201104365

    Article  CAS  Google Scholar 

  36. Jamadi O, Réveret F, Mallet E (2016) Polariton condensation phase diagram in wide-band-gap planar microcavities: GaN versus ZnO. Phys Rev B 93:115205

    Article  Google Scholar 

  37. Kou LZ, Guo WL, Li C (2008) Piezoelectricity of ZNO and its nanostructures. In: Symposium on piezoelectricity, acoustic waves, and device applications, SPAWDA 354–359. https://doi.org/10.1109/SPAWDA.2008.4775808

  38. Broitman E, Soomro MY, Lu J, Willander M, Hultman L (2013) Nanoscale piezoelectric response of ZnO nanowires measured using a nanoindentation technique. Phys Chem Chem Phys PCCP 26(15):11113–11118. https://doi.org/10.1039/c3cp50915j

    Article  CAS  Google Scholar 

  39. Ghosh M, Ghosh S, Seibt M, Rao KY, Peretzki P, Mohan Rao G (2016) Ferroelectric origin in one-dimensional undoped ZnO towards high electromechanical response. CrystEngComm 18(4):622–630. https://doi.org/10.1039/C5CE02262B

    Article  CAS  Google Scholar 

  40. Rawal TB, Ozcan A, Liu SH et al (2019) Interaction of zinc oxide nanoparticles with water: implications for catalytic activity. Appl Nano Mater 2:4257–4266. https://doi.org/10.1021/acsanm.9b0071

    Article  CAS  Google Scholar 

  41. Tan C, Tao R, Yang Z et al (2022)Tune the photo response of monolayer MoS2 by decorating CsPbBr3 perovskite nanoparticles. Chin Chem Lett. 34: 107979 https://doi.org/10.1016/j.cclet.2022.107979

    Article  CAS  Google Scholar 

  42. Shuaibu AD, Rubab R, Khan S et al (2021) Comparative effects of zinc oxide nanoparticles over the interfacial properties of low concentrations of ionic surfactants at interfaces. Colloids Surf A Physicochem Eng Asp 637:128241. https://doi.org/10.1016/j.colsurfa.2021.128241

    Article  CAS  Google Scholar 

  43. Ali RN, Naz H, Li J, Zhu X, Liu P, Xiang B (2018) Band gap engineering of transition metal (Ni/Co) co-doped in zinc oxide (ZnO) nanoparticles. J Alloy Compd 744:90–95. https://doi.org/10.1016/J.JALLCOM.2018.02.072

    Article  CAS  Google Scholar 

  44. Wibowo A, Marsudi MA, Amal MI, Ananda MB et al (2020) ZnO nanostructured materials for emerging solar cell applications. RSC Adv 10(70):42838–42859. https://doi.org/10.1039/D0RA07689A

    Article  CAS  Google Scholar 

  45. Bhatia D, Sharma H, Meena RS, Palkar VR (2016) A novel ZnO piezoelectric microcantilever energy scavenger: fabrication and characterization. Sens Bio-Sens Res 9:45–52. https://doi.org/10.1016/J.SBSR.2016.05.008

    Article  Google Scholar 

  46. Qi K, Cheng B, Yu J, Ho W (2017) Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J Alloy Compd 727:792–820. https://doi.org/10.1016/J.JALLCOM.2017.08.142

    Article  CAS  Google Scholar 

  47. Singh P, Nanda A (2013) Antimicrobial and antifungal potential of zinc oxide nanoparticles in comparison to conventional zinc oxide particles. J Chem Pharm Res 5(11):457–463

    Google Scholar 

  48. Waseem A, Johar MA, Abdullah A et al (2021) Enhanced performance of a flexible and wearable piezoelectric nanogenerator using semi-insulating GaN:Mg/ZnO coaxial nanowires. Nano Energy 90:106552. https://doi.org/10.1016/J.NANOEN.2021.106552

    Article  CAS  Google Scholar 

  49. Nayak T, Nayak P, Swain B, Bhuya S (2021) Contactless excitation of ZnO based piezoelectric device. Mater Today Proc 35:137–140. https://doi.org/10.1016/J.MATPR.2020.03.529

    Article  CAS  Google Scholar 

  50. Novak N, Keil P, Frömling T et al (2019) Influence of metal/semiconductor interface on attainable piezoelectric and energy harvesting properties of ZnO. Acta Mater 162:277–283. https://doi.org/10.1016/J.ACTAMAT.2018.10.008

    Article  CAS  Google Scholar 

  51. Kim H, Yun S, Kim K, Kim W et al (2020) Breaking the elastic limit of piezoelectric ceramics using nanostructures: a case study using ZnO. Nano Energy 78:105259. https://doi.org/10.1016/J.NANOEN.2020.105259

    Article  CAS  Google Scholar 

  52. Jin C, Hao N, Xu Z, Trase I et al (2020) Flexible piezoelectric nanogenerators using metal-doped ZnO-PVDF films. Sens Actuators A Phys 305:111912. https://doi.org/10.1016/J.SNA.2020.111912

    Article  CAS  Google Scholar 

  53. Tandon B, Blaker JJ, Cartmell SH (2018) Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair. Acta Biomater 73:1–20. https://doi.org/10.1016/J.ACTBIO.2018.04.026

    Article  CAS  Google Scholar 

  54. Ali F, Raza W, Li X, Gul H, Kim KH (2019) Piezoelectric energy harvesters forbiomedical applications. NanoEnergy 57:879–902. https://doi.org/10.1016/J.NANOEN.2019.01.012

    Article  CAS  Google Scholar 

  55. Surmenev RA, Orlova T, Chernozem RV et al (2019) Hybrid lead-free polymer-based nanocomposites with improved piezoelectric response for biomedical energy-harvesting applications: a review. Nano Energy 62:475–506. https://doi.org/10.1016/J.NANOEN.2019.04.090

    Article  CAS  Google Scholar 

  56. Gouveia I (2010) Nanobiotechnology: a new strategy to develop non-toxic antimicrobial textiles for healthcare applications. J Biotechnol 150:349. https://doi.org/10.1016/j.jbiotec.2010.09.387

    Article  Google Scholar 

  57. Hussain I, Singh NB, Singh A, Singh H, Singh SC (2016) Green synthesis of nanoparticles and its potential application. Biotechnol Lett 38(4):545–560. https://doi.org/10.1007/s10529-015-2026-7

    Article  CAS  Google Scholar 

  58. Taratula O, Galoppini E, Wang D, Chu D et al (2006) Binding studies of molecular linkers to ZnO and MgZnO nanotip films. J Phys Chem B 110:6506–6515. https://doi.org/10.1021/jp0570317

    Article  CAS  Google Scholar 

  59. Wu YL, Fu S, Tok AIY et al (2008) A dual-colored bio-marker made of doped ZnO nanocrystals. Nanotechnology 19(34):345605. https://doi.org/10.1088/0957-4484/19/34/345605

    Article  CAS  Google Scholar 

  60. Xie X, Liao J, Shao X, Li Q, Lin Y (2017) The effect of shape on cellular uptake of gold nanoparticles in the forms of stars, rods, and triangles. Sci Rep 7:1–9

    Google Scholar 

  61. Kuhn DA, Vanhecke D, Michen B et al (2014) Rothen-Rutishauser, B. Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages. Beilstein J Nanotechnol 5:1625–1636. https://doi.org/10.3762/bjnano.5.174

    Article  CAS  Google Scholar 

  62. Riaz M, Song J, Nur O, Wang ZL, Willander M (2010) Study of the piezoelectric power generation of ZnO nanowire arrays grown by different methods. Adv Func Mater 21(4):628–633. https://doi.org/10.1002/adfm.201001203

    Article  CAS  Google Scholar 

  63. Lee JH, Lee WJ, Lee SH et al (2015) Atomic-scale origin of piezoelectricity in wurtzite ZnO. Phys Chem Chem Phys 17(12):7857–7863. https://doi.org/10.1039/C4CP06094F

    Article  CAS  Google Scholar 

  64. Consonni V, Lord AM (2021) Polarity in ZnO nanowires: a critical issue for piezotronics and piezoelectric devices. Nano Energy 83:105789. https://doi.org/10.1016/j.nanoen.2021.105789

    Article  CAS  Google Scholar 

  65. Gao Y, Xu D, Ren D et al (2020) Green synthesis of zinc oxide nanoparticles using Citrus sinensis peel extract and application to strawberry preservation: a comparison study. LWT 126:109297

    Article  CAS  Google Scholar 

  66. Wang XB, Song C, Li DM, Geng KW, Zeng F, Pan F (2006) The influence of different doping elements on microstructure, piezoelectric coefficient and resistivity of sputtered ZnO film. Appl Surf Sci 253(3):1639–1643. https://doi.org/10.1016/j.apsusc.2006.02.059

    Article  CAS  Google Scholar 

  67. Yang YC, Song C, Wang XH, Zeng F, Pan F (2008) Giant piezoelectric d33 coefficient in ferroelectric vanadium doped ZnO films. Appl Phys Lett 92(1):012907. https://doi.org/10.1063/1.2830663

    Article  CAS  Google Scholar 

  68. Luo JT, Yang YC, Zhu XY, Chen G, Zeng F, Pan F (2010) Enhanced electromechanical response of Fe-doped ZnO films by modulating the chemical state and ionic size of the Fe dopant. Phys Rev B Condens Matter Mater Phys 82(1):1–7. https://doi.org/10.1103/PhysRevB.82.014116

    Article  CAS  Google Scholar 

  69. Goel S, Sinha N, Yadav H, Godara S, Joseph AJ, Kumar B (2017) Ferroelectric Gd-doped ZnO nanostructures: enhanced dielectric, ferroelectric and piezoelectric properties. Mater Chem Phys 202:56–64. https://doi.org/10.1016/j.matchemphys.2017.08.067

    Article  CAS  Google Scholar 

  70. Yadav H, Sinha N, Goel S, Kumar B (2016) Eu-doped ZnO nanoparticles for dielectric, ferroelectric, and piezoelectric applications. J Alloys Compd 689:333–341. https://doi.org/10.1016/j.jallcom.2016.07.329

    Article  CAS  Google Scholar 

  71. Sinha N, Ray G, Bhandari S, Godara S, Kumar B (2014) Synthesis and enhanced properties of cerium doped ZnO nanorods. Ceram Int 40(8):12337–12342. https://doi.org/10.1016/j.ceramint.2014.04.079

    Article  CAS  Google Scholar 

  72. Sinha N, Goel S, Joseph AJ, Yadav H, Batra K, Gupta MK, Kumar B (2018) Y-doped ZnO nanosheets: gigantic piezoelectric response for an ultra-sensitive flexible piezoelectric nanogenerator. Ceram Int 44(7):8582–8590. https://doi.org/10.1016/j.ceramint.2018.02.066

    Article  CAS  Google Scholar 

  73. Batra K, Sinha N, Goel S, Yadav H, Joseph AJ, Kumar B (2018) Enhanced dielectric, ferroelectric and piezoelectric performance of Nd-ZnO nanorods and their application in flexible piezoelectric nanogenerator. J Alloys Compd 767:1003–1011. https://doi.org/10.1016/j.jallcom.2018.07.187

    Article  CAS  Google Scholar 

  74. Pan F, Luo J, Yang Y, Wang X, Zang F (2011) Giant piezoresponse and promising application of environmentally friendly small-ion-doped ZnO. Sci China Technol Sci 55(2):421–436. https://doi.org/10.1007/s11431-011-4682-8

    Article  CAS  Google Scholar 

  75. Yang YC, Song C, Wang XH, Zeng F, Pan F (2008) Cr-substitution-induced ferroelectric and improved piezoelectric properties of Zn1−xCrxO films. J Appl Phys 130:074107. https://doi.org/10.1063/1.2903152

    Article  CAS  Google Scholar 

  76. Chen YJ, Brahma S, Liu CP, Huang J (2017) Enhancement of the piezoelectric coefficient in hexagonal MgxZn1-xO films at lower Mg compositions. J Alloys Compd 728:1248–1253. https://doi.org/10.1016/j.jallcom.2017.08.278

    Article  CAS  Google Scholar 

  77. Goel S, Sinha N, Yadav H, Abhilash J, Kumar B (2017) Experimental investigation on the structural, dielectric, ferroelectric, and piezoelectric properties of La doped ZnO nanoparticles and their application in dye-sensitized solar cells. Phys E Low-dimens Syst Nanostruct 91:72–81. https://doi.org/10.1016/j.physe.2017.04.010

    Article  CAS  Google Scholar 

  78. Bhargav PK, Murthy KSR, Pandey JK et al (2019) Tuning the structural, morphological, optical, wetting properties and anti-fungal activity of ZnO nanoparticles by C doping. Nano-Struct Nano-Objects 19:100365. https://doi.org/10.1016/J.NANOSO.2019.100365

    Article  CAS  Google Scholar 

  79. Nour ES, Echresh A, Liu X, Broitman E, Willander M, Nur O (2015) Piezoelectric and opto-electrical properties of silver-doped ZnO nanorods synthesized by low temperature aqueous chemical method. AIP Adv 5:077163. https://doi.org/10.1063/1.4927510

    Article  CAS  Google Scholar 

  80. Kammel RS, Sabry RS (2019) Effects of the aspect ratio of ZnO nanorods on the performance of piezoelectric nanogenerators. J Sci Adv Mater Devices 4(3):420–424. https://doi.org/10.1016/J.JSAMD.2019.08.002

    Article  Google Scholar 

  81. Zviagin AS, Chernozem RV, Surmeneva MA et al (2019) Enhanced piezoelectric response of hybrid biodegradable 3D poly(3-hydroxybutyrate) scaffolds coated with hydrothermally deposited ZnO for biomedical applications. Eur Polym J 117:272–279. https://doi.org/10.1016/J.EURPOLYMJ.2019.05.016

    Article  CAS  Google Scholar 

  82. Sagheer R, Khalil M, Abbas V, Kayani ZN, Tariq U, Ashraf F (2020) Effect of Mg doping on structural, morphological, optical, and thermal properties of ZnO nanoparticles. Optik 200:163428. https://doi.org/10.1016/j.ijleo.2019.163428

    Article  CAS  Google Scholar 

  83. Aleksandrova M (2020) Polymeric seed layer as a simple approach for nanostructuring of Ga-doped ZnO films for flexible piezoelectric energy harvesting. Microelectron Eng 233:111434. https://doi.org/10.1016/J.MEE.2020.111434

    Article  CAS  Google Scholar 

  84. Briscoe J, Shoaee S, Durrant JR et al (2013) Piezoelectric enhancement of hybrid organic/inorganic photovoltaic device. J Phys Conf Ser 476:012009. https://doi.org/10.1088/1742-6596/476/1/012009

    Article  CAS  Google Scholar 

  85. Yoon GC, Shin KS, Gupta MK et al (2015) High-performance hybrid cell based on an organic photovoltaic device and a direct current piezoelectric nanogenerator. Nano Energy 12:547–555. https://doi.org/10.1016/j.nanoen.2015.01.028

    Article  CAS  Google Scholar 

  86. Xu C, Wang ZL (2011) Compact hybrid cell based on a convoluted nanowire structure for harvesting solar and mechanical energy. Adv Mater 23:873–877. https://doi.org/10.1002/adma.201003696

    Article  CAS  Google Scholar 

  87. Ahuja T, Irfan MA, Kumar RD (2007) Biomolecular immobilization on conducting polymers for biosensing applications. Biomaterials 28(5):791–805. https://doi.org/10.1016/j.biomaterials.2006.09.046

    Article  CAS  Google Scholar 

  88. Zhao WW, Xu JJ, Chen HY (2015) Photoelectrochemical bioanalysis: the state of the art. Chem Soc Rev 44(4):729–741. https://doi.org/10.1039/C4CS00228H

    Article  CAS  Google Scholar 

  89. Vabbina PK, Kaushik A, Pokhrel N, Bhansali S, Pala N (2015) Electrochemical cortisol immunosensors based on sonochemically synthesized zinc oxide 1D nanorods and 2D nanoflakes. Biosens Bioelectron 63:124–130. https://doi.org/10.1016/j.bios.2014.07.026

    Article  CAS  Google Scholar 

  90. Kushwaha AS, Kumar A, Kumar R et al (2018) Zinc oxide, gold and graphene-based surface plasmon resonance (SPR) biosensor for detection of pseudomonas like bacteria: a comparative study. Optik 172:697–707. https://doi.org/10.1016/j.ijleo.2018.07.066

    Article  CAS  Google Scholar 

  91. Batra N, Tomar M, Jain P, Gupta V (2013) Laser ablated ZnO thin film for amperometric detection of urea. J Appl Phys 114(12):124702. https://doi.org/10.1063/1.4823853

    Article  CAS  Google Scholar 

  92. Solanki PR, Kaushik A, Ansari AA, Sumana G, Malhotra BD (2008) Zinc oxide-chitosan nano bio-composite for urea sensor. Appl Phys Lett 93:163903-163905. https://doi.org/10.1063/1.2980448

    Article  CAS  Google Scholar 

  93. Ahmad R, Tripathy N, Hahn YB (2014) Highly stable urea sensor based on ZnO nanorods directly grown on Ag/glass electrodes. Sens Actuators B Chem 19:290–295. https://doi.org/10.1016/j.snb.2013.12.098

    Article  CAS  Google Scholar 

  94. Mozaffari SA, Rahmanian R, Abedi M, Amoli HS (2014) Urea impedimetric biosensor based on reactive RF magnetron sputtered zinc oxide nanoporous transducer. Electrochim Acta 146:538–547. https://doi.org/10.1016/j.electacta.2014.08.105

    Article  CAS  Google Scholar 

  95. Rahmanian R, Mozaffari SA, Ahmad S (2015) Electrochemical fabrication of ZnO-polyvinyl alcohol nanostructured hybrid film for application to urea biosensor. Sens Actuators B Chem 207:772–781. https://doi.org/10.1016/j.snb.2014.10.129

    Article  CAS  Google Scholar 

  96. Rahmanian R, Mozaffari SA, Amoli SH, Abedi M (2017) Development of sensitive impedimetric urea biosensor using DC sputtered Nano-ZnO on TiO2 thin film as a novel hierarchical nanostructure transducer. Sens Actuators B Chem 256:760–774. https://doi.org/10.1016/j.snb.2017.10.009

    Article  CAS  Google Scholar 

  97. Rahmanian R, Mozaffari SA, Abedi M (2015) Disposable urea biosensor based on nanoporous ZnO film fabricated from omissible polymeric substrate. Mater Sci Eng C Mater Biol Appl 57:387–396. https://doi.org/10.1016/j.msec.2015.08.004

    Article  CAS  Google Scholar 

  98. Zhu X, Yuri I, Gan X, Suzuki I, Li G (2007) Electrochemical study of the effect of nano-zinc oxide on microperoxidase and its application to more sensitive hydrogen peroxide biosensor preparation. Biosens Bioelectron 22(8):1600–1604. https://doi.org/10.1016/j.bios.2006.07.007

    Article  CAS  Google Scholar 

  99. Yang Z, Zong XL, Ye Z, Zhao B, Wang QL, Wang P (2010) The application of complex multiple forklike ZnO nanostructures to rapid and ultrahigh sensitive hydrogen peroxide biosensors. Biomaterials 31(29):7534–7541. https://doi.org/10.1016/j.biomaterials.2010.06.019

    Article  CAS  Google Scholar 

  100. Lu X, Zhang H, Ni Y, Zhang Q, Chen J (2008) Porous nanosheet-based ZnO microspheres for the construction of direct electrochemical biosensors. Biosens Bioelectron 24(1):93–98. https://doi.org/10.1016/j.bios.2008.03.025

    Article  CAS  Google Scholar 

  101. Palanisamy S, Cheemalapati S, Chen SM (2012) Highly sensitive and selective hydrogen peroxide biosensor based on hemoglobin immobilized at multiwalled carbon nanotubes–zinc oxide composite electrode. Anal Biochem 429(2):108–115. https://doi.org/10.1016/j.ab.2012.07.001G

    Article  CAS  Google Scholar 

  102. Olenin YuA (2017) Methods of nonenzymatic determination of hydrogen peroxide and related reactive oxygen species. J Anal Chem 72(3):243–255. https://doi.org/10.1134/S1061934817030108

    Article  CAS  Google Scholar 

  103. Wang J, Xu M, Zhao R, Chen G (2010) A highly sensitive H2O2 sensor based on zinc oxide nanorod arrays film sensing interface. Analyst 135:1992–1996. https://doi.org/10.1039/C0AN00041H

    Article  CAS  Google Scholar 

  104. Xiang C, Zou Y, Sun LX, Xu F (2009) Direct electrochemistry and enhanced electrocatalysis of horseradish peroxidase based on flowerlike ZnO–gold nanoparticle–Nafion nanocomposite. Sens Actuators B Chem 136(1):158–162. https://doi.org/10.1016/j.snb.2008.10.058

    Article  CAS  Google Scholar 

  105. Lin CY, Lai YH, Balamurugan A, Vittal R, Lin CW, Ho KC (2010) Electrode modified with a composite film of ZnO nanorods and Ag nanoparticles as a sensor for hydrogen peroxide. Talanta 82(1):340–347. https://doi.org/10.1016/j.talanta.2010.04.047

    Article  CAS  Google Scholar 

  106. Palanisamy S, Chen SM, Sarawathi R (2012) A novel nonenzymatic hydrogen peroxide sensor based on reduced graphene oxide/ZnO composite modified electrode. Sens Actuators B 166:372–377. https://doi.org/10.1016/J.SNB.2012.02.075

    Article  Google Scholar 

  107. Ali SMU, Alvi N, Ibupoto Z et al (2011) Selective potentiometric determination of uric acid with uricase immobilized on ZnO nanowires. Sens Actuators B Chem 152:241–247. https://doi.org/10.1016/j.snb.2010.12.015

    Article  CAS  Google Scholar 

  108. Zhao Y, Cao L, Lanlan L et al (2016) Conducting polymers and their applications in diabetes management. Sensors 16:1787. https://doi.org/10.3390/s16111787

    Article  CAS  Google Scholar 

  109. Ali SMU, Ibupoto ZH, Kashif M, Hashim U, Willander M (2012) A potentiometric indirect uric acid sensor based on ZnO nanoflakes and immobilized uricase. Sensors 12:2787–2797. https://doi.org/10.3390/s120302787

    Article  CAS  Google Scholar 

  110. Ali M, Shah KSW et al (2018) Quantitative detection of uric acid through ZnO quantum dots based highly sensitive electrochemical biosensor. Sens Actuators A Phys 283:282–290. https://doi.org/10.1016/j.sna.2018.10.009

    Article  CAS  Google Scholar 

  111. Zheng W, Zhao M, Liu W et al (2018) Electrochemical sensor based on molecularly imprinted polymer/reduced graphene oxide composite for simultaneous determination of uric acid and tyrosine. J Electroanal Chem 813:75–82. https://doi.org/10.1016/j.jelechem.2018.02.022

    Article  CAS  Google Scholar 

  112. Ahmad R, Tripathy N, Jang NK, Gilson K, Hahn YB (2015) Fabrication of highly sensitive uric acid biosensor based on directly grown ZnO nanosheets on electrode surface. Sens Actuators B Chem 206:146–151. https://doi.org/10.1016/j.snb.2014.09.026

    Article  CAS  Google Scholar 

  113. Fu L, Zheng Y, Wang A, Cai W, Deng B, Zhang Z (2016) An electrochemical sensor based on reduced graphene oxide and ZnO nanorods-modified glassy carbon electrode for uric acid detection. Arab J Sci Eng 41:135–141. https://doi.org/10.1007/s13369-015-1621-1

    Article  CAS  Google Scholar 

  114. Wei Y, Li Y, Liu X et al (2010) ZnO nanorods/Au hybrid nanocomposites for glucose biosensor. Biosens Bioelectron 26(1):275–278. https://doi.org/10.1016/j.bios.2010.06.006

    Article  CAS  Google Scholar 

  115. Asif MH, Usman Ali SM, Nur O et al (2010) Functionalized ZnO nanorod-based selective magnesium ion sensor for intracellular measurements. Biosens Bioelectron 26:1118–1123. https://doi.org/10.1016/j.bios.2010.08.017

    Article  CAS  Google Scholar 

  116. Liu X, Hu Q, Wu Q, Zhang W, Fang Z, Xie Q (2009) Aligned ZnO nanorods: a useful film to fabricate amperometric glucose biosensor. Colloids Surf B Biointerfaces 74:154–158. https://doi.org/10.1016/j.colsurfb.2009.07.011

    Article  CAS  Google Scholar 

  117. Ma Q, Nakazato K (2014) Low-temperature fabrication of ZnO nanorods/ferrocenyl–alkanethiol bilayer electrode and its application for enzymatic glucose detection. Biosens Bioelectron 51:362–365. https://doi.org/10.1016/j.bios.2013.08.004

    Article  CAS  Google Scholar 

  118. Fang B, Zhang C, Wang G, Wang M, Ji Y (2011) A glucose oxidase immobilization platform for glucose biosensor using ZnO hollow nanospheres. Sens Actuators B Chem 155:304–310. https://doi.org/10.1016/j.snb.2010.12.040

    Article  CAS  Google Scholar 

  119. Liu J, Guo C, Li CM, Li Y et al (2009) Carbon-decorated ZnO nanowire array: a novel platform for direct electrochemistry of enzymes and biosensing applications. Electrochem Commun 11:202–205. https://doi.org/10.1016/j.elecom.2008.11.009

    Article  CAS  Google Scholar 

  120. Umar A, Rahman MM, Kim SH, Hahn YB (2008) ZnO nanonails: synthesis and their application as glucose biosensor. J Nanosci Nanotechnol 8:3216–3221. https://doi.org/10.1166/jnn.2008.116

    Article  CAS  Google Scholar 

  121. Kong T, Chen Y, Ye Y et al (2009) An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes. Sens Actuators B Chem 138:344–350. https://doi.org/10.1016/j.snb.2009.01.002

    Article  CAS  Google Scholar 

  122. Zang J, Li CM, Cui X et al (2007) Tailoring zinc oxide nanowires for high performance amperometric glucose sensor. Electroanalysis 19:1008–1014. https://doi.org/10.1002/elan.200603808

    Article  CAS  Google Scholar 

  123. Wang JX, Sun XW, Wei A, Lei Y et al (2006) Zinc oxide nanocomb biosensor for glucose detection. Appl Phys Lett 88:233106. https://doi.org/10.1063/1.2210078

    Article  CAS  Google Scholar 

  124. Anusha JR, Kim HJ, Fleming AT et al (2014) Simple fabrication of ZnO/Pt/chitosan electrode for enzymatic glucose biosensor. Sens Actuators B Chem 202:827–833. https://doi.org/10.1016/j.snb.2014.06.024

    Article  CAS  Google Scholar 

  125. Wei A, Sun XW, Wang JX et al (2006) Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition. Appl Phys Lett 89:123902. https://doi.org/10.1063/1.2356307r

    Article  Google Scholar 

  126. Chu X, Zhu X, Dong Y, Chen T, Ye M, Sun W (2012) An amperometric glucose biosensor based on the immobilization of glucose oxidase on the platinum electrode modified with NiO doped ZnO nanorods. J Electroanal Chem 676:20–26. https://doi.org/10.1016/j.jelechem.2012.04.009

    Article  CAS  Google Scholar 

  127. Hwa KY, Subramani B (2014) Synthesis of zinc oxide nanoparticles on graphene-carbon nanotube hybrid for glucose biosensor applications. Biosens Bioelectron 62:127–133. https://doi.org/10.1016/j.bios.2014.06.023

    Article  CAS  Google Scholar 

  128. Karuppiah C, Palanisamy S, Chen SM, Veeramani V, Periakaruppan P (2014) Direct electrochemistry of glucose oxidase and sensing glucose using a screen-printed carbon electrode modified with graphite nanosheets and zinc oxide nanoparticles. Microchim Acta 181:1843–1850. https://doi.org/10.1007/s00604-014-1256-z

    Article  CAS  Google Scholar 

  129. Elahi MY, Khodadadi AA, Mortazavi Y (2014) A glucose biosensor based on glucose oxidase immobilized on ZnO/Cu2O graphene oxide nanocomposite electrode. J Electrochem Soc 161:81–87. https://doi.org/10.1149/2.020405jes

    Article  CAS  Google Scholar 

  130. Li Z, Sheng L, Meng A, Xie C, Zhao K (2016) A glassy carbon electrode modified with a composite consisting of reduced graphene oxide, zinc oxide and silver nanoparticles in a chitosan matrix for studying the direct electron transfer of glucose oxidase and for enzymatic sensing of glucose. Microchim Acta 183:1625–1632. https://doi.org/10.1007/s00604-016-1791-x

    Article  CAS  Google Scholar 

  131. Khan R, Kaushik A, Solanki PR et al (2008) Zinc oxide nanoparticles-chitosan composite film for cholesterol biosensor. Anal chim Acta 616:207–213. https://doi.org/10.1016/j.aca.2008.04.010

    Article  CAS  Google Scholar 

  132. Solanki PR, Kaushik A, Ansari AA, Malhotra BD (2009) Nanostructured zinc oxide platform for cholesterol sensor. Appl Phys Lett 94:143901. https://doi.org/10.1063/1.3111429

    Article  CAS  Google Scholar 

  133. Ahmad R, Tripathy N, Kim SH et al (2014) High performance cholesterol sensor based on ZnO nanotubes grown on Si/Ag electrodes. Electrochem Commun 38:4–7. https://doi.org/10.1016/j.elecom.2013.10.028

    Article  CAS  Google Scholar 

  134. Ahmad C, Pan C, Gan L, Nawaz Z (2010) Zhu J (2009) Highly sensitive amperometric cholesterol biosensor based on Pt-incorporated fullerene-like ZnO nanospheres. J Phys Chem C 114(1):243–250. https://doi.org/10.1021/jp9089497

    Article  CAS  Google Scholar 

  135. Umar A, Rahman MM, Vaseem M, Hahn YB (2009) Ultra-sensitive cholesterol biosensor based on low-temperature grown ZnO nanoparticles. Electrochem Commun 11:118–121. https://doi.org/10.1016/j.elecom.2008.10.046

    Article  CAS  Google Scholar 

  136. Singh SP, Arya SK, Pandey P et al (2007) Cholesterol biosensor based on rf sputtered zinc oxide nanoporous thin film. Appl Phys Lett 91:063901. https://doi.org/10.1063/1.2768302

    Article  CAS  Google Scholar 

  137. Umar A, Rahman MM, Al-Hajry A, Hahn YB (2009) Highly-sensitive cholesterol biosensor based on well-crystallized flower-shaped ZnO nanostructures. Talanta 78:284–289. https://doi.org/10.1016/j.talanta.2008.11.018

    Article  CAS  Google Scholar 

  138. Kumar SA, Cheng HW, Chen SM (2009) Electroanalysis of ascorbic acid (vitamin C) using nano-ZnO/poly(luminol) hybrid film modified electrode. React Funct Polym 69:364–370. https://doi.org/10.1016/j.reactfunctpolym.2009.03.001

    Article  CAS  Google Scholar 

  139. Ganjali MR, Nejad FG, Beitollahi H et al (2017) Highly sensitive voltammetric sensor for determination of ascorbic acid using graphite screen printed electrode modified with ZnO/Al2O3 nanocomposite. Int J Electrochem Sci 12:3231–3240. https://doi.org/10.20964/2017.04.07

    Article  CAS  Google Scholar 

  140. Bijad M, Maleh HK, Khalilzadeh MA (2013) Application of ZnO/CNTs nanocomposite ionic liquid paste electrode as a sensitive voltammetric sensor for determination of ascorbic acid in food samples. Food Anal Methods 6:1639–1647. https://doi.org/10.1007/s12161-013-9585-9

    Article  Google Scholar 

  141. Ngai KS, Tan WT, Zainal Z, Zawawi RM, Zidan M (2013) Voltammetry detection of ascorbic acid at glassy carbon electrode modified by single-walled carbon nanotube/zinc oxide. Int J Electrochem Sci 8:10557–10567

    Article  CAS  Google Scholar 

  142. Murugan N, Kumar TV, Devi NR, Sundramoorthy AK (2019) A flower-structured MoS 2-decorated f-MWCNTs/ZnO hybrid nanocomposite-modified sensor for the selective electrochemical detection of vitamin C. Chem N J 43:15105–15114. https://doi.org/10.1039/C9NJ02993A

    Article  CAS  Google Scholar 

  143. Afkhami A, Kafrashi F, Madrakian T (2015) Electrochemical determination of levodopa in the presence of ascorbic acid by polyglycine/ZnO nanoparticles/multi-walled carbon nanotubes-modified carbon paste electrode. Ionics 21:2937–2947. https://doi.org/10.1007/s11581-015-1486-z

    Article  CAS  Google Scholar 

  144. Yue HY, Zhang H, Huang S et al (2017) Synthesis of ZnO nanowire arrays/3D graphene foam and application for determination of levodopa in the presence of uric acid. Biosens Bioelectron 89:592–597. https://doi.org/10.1016/j.bios.2016.01.078

    Article  CAS  Google Scholar 

  145. Yue HY, Song SS, Guo XR et al (2019) Three-dimensional ZnO nanosheet spheres/graphene foam for electrochemical determination of levodopa in the presence of uric acid. J Electroanal Chem 838:142–147. https://doi.org/10.1016/j.jelechem.2019.02.050

    Article  CAS  Google Scholar 

  146. Yue HY, Wang B, Huang S et al (2018) Synthesis of graphene/ZnO nanoflowers and electrochemical determination of levodopa in the presence of uric acid. J Mater Sci Mater Electron 29:14918–14926. https://doi.org/10.1007/s10854-018-9630-y

    Article  CAS  Google Scholar 

  147. Perumal V, Hashim U, Gopinath SC et al (2015) Spotted nanoflowers: gold-seeded zinc oxide nanohybrid for selective bio-capture. Sci Rep 5:12231. https://doi.org/10.1038/srep12231

    Article  CAS  Google Scholar 

  148. Saravanan P, Senthil Kannan K, Divya R et al (2020) A perspective approach towards appreciable size and cost-effective solar cell fabrication by synthesizing ZnO nanoparticles from Azadirachta indica leaves extract using domestic microwave oven. J Mater Sci Mater Electron 31:4301–4309. https://doi.org/10.1007/s10854-020-02985-9

    Article  CAS  Google Scholar 

  149. Verma PR, Khan F, Banerjee S (2021) Salvadora persica root extract-mediated fabrication of ZnO nanoparticles and characterization. Inorg Nano-Metal Chem 51(3):427–433. https://doi.org/10.1080/24701556.2020.1793355

    Article  CAS  Google Scholar 

  150. Zheng Y, Wang Z, Peng F, Li Fu (2016) Application of biosynthesized ZnO nanoparticles on an electrochemical H2O2 biosensor. Braz J Pharm Sci 52(4):781–786. https://doi.org/10.1590/S1984-82502016000400023

    Article  CAS  Google Scholar 

  151. Venkatesan G, Vijayaraghavan R, Chakravarthula SN, Sathiyan G (2019) Fluorescent zinc oxide nanoparticles of Boswellia ovalifoliolata for selective detection of picric acid. Front Res Today 2:2002

    Article  Google Scholar 

  152. Singh J, Dutta T, Kim K, Rawat M, Samddar P, Kumar P (2018) Green synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnol 16(84):1–24. https://doi.org/10.1186/s12951-018-0408-4

    Article  CAS  Google Scholar 

  153. Akintelu SA, Folorunso AS (2020) A review on green synthesis of zinc oxide nanoparticles using plant extracts and its biomedical applications. Bio NanoSci. 10: 848-863 https://doi.org/10.1007/s12668-020-00774-6

    Article  Google Scholar 

  154. Raj P, Sadaiyandi K, Kennedy A et al (2018) Influence of Mg doping on ZnO nanoparticles for enhanced photocatalytic evaluation and antibacterial analysis. Nanoscale Res Lett 13:1–13. https://doi.org/10.1186/s11671-018-2643-x

    Article  CAS  Google Scholar 

  155. Xiongwei H, Xiaochun D, Yi L, Jianping Q, Weili Z, Wei W (2016) Bioimaging of nanoparticles: the crucial role of discriminating nanoparticles from free probes. Drug Discov Today 22(2):382–387. https://doi.org/10.1016/j.drudis.2016.10.002

    Article  CAS  Google Scholar 

  156. Islam F, Shohag S, Uddin MJ et al (2022) Exploring the journey of zinc oxide nanoparticles (ZnO-NPs) toward biomedical applications. Materials 15:2160. https://doi.org/10.3390/ma15062160

    Article  CAS  Google Scholar 

  157. Nandhini SN, Sisubalan N, Vijayan A et al (2023) Recent advances in green synthesized nanoparticles for bactericidal and wound healing applications. Heliyon 9:. https://doi.org/10.1016/j.heliyon.2023.e13128

    Article  CAS  Google Scholar 

  158. Kumar S, Baruah A, Tonda S et al (2014) Cost-effective and eco-friendly synthesis of novel and stable N-doped ZnO/g-C3N4 core–shell nanoplates with excellent visible-light responsive photocatalysis. Nanoscale 6:4830-4832. https://doi.org/10.1039/C3NR05271K

    Article  CAS  Google Scholar 

  159. Sharma P, Hasan MR, Kumar N et al (2022) 92 years of zinc oxide: has been studied by the scientific community since the 1930s-an overview. Sens Int 6:100182. https://doi.org/10.1016/j.sintl.2022.100182

    Article  Google Scholar 

  160. Jia Z, Misra RDK (2013) Tunable ZnO quantum dots for bioimaging: synthesis and photoluminescence. Mater Technol 28(4):221–227. https://doi.org/10.1179/1753555713Y.0000000061

    Article  CAS  Google Scholar 

  161. Alves MM, Andrade SM, Grenho L et al (2019) Influence of apple phytochemicals in ZnO nanoparticles formation, photoluminescence, and biocompatibility for biomedical applications. Mater Sci Eng C 101:76–87. https://doi.org/10.1016/j.msec.2019.03.084

    Article  CAS  Google Scholar 

  162. Liu ZY, Shen CL, Lou Q et al (2020) Efficient chemiluminescent ZnO nanoparticles for cellular imaging. J Lumin 221:117111. https://doi.org/10.1016/j.jlumin.2020.117111

    Article  CAS  Google Scholar 

  163. Cai N, Yang DQ, Chen FN (2019) A novel chemiluminescence system based on bis (2, 4, 6 Trichlorophyenyl) oxalate and hydrogen peroxide induced by CdTe QDs for determination of phloroglucinol. Microchem J 144:345–350. https://doi.org/10.1016/j.microc.2018.09.024

    Article  CAS  Google Scholar 

  164. Li SF, Zhang XM, Du WX, Ni YH, Wei XW (2009) Chemiluminescence reactions of a luminol system catalyzed by ZnO nanoparticles. J Phys Chem C 113:1046–1051. https://doi.org/10.1021/jp808312j

    Article  CAS  Google Scholar 

  165. Si X, Song X, Xu K et al (2019) Bovine serum albumin-templated MnO2 nanoparticles are peroxidase mimics for glucose determination by luminol chemiluminescence. Microchem J 149:104050. https://doi.org/10.1016/j.microc.2019.104050

    Article  CAS  Google Scholar 

  166. Vahid B, Hassanzadeh J, Khodakarami B (2019) CdSe quantum dots-sensitized chemiluminescence system and quenching effect of gold nanoclusters for cyanide detection. Spectrochim Acta A 212:322–329. https://doi.org/10.1016/j.saa.2019.01.017

    Article  CAS  Google Scholar 

  167. Xiong HM, Xu Y, Ren QG, Xia YY (2008) Stable aqueous ZnO@polymer core-shell nanoparticles with tunable photoluminescence and their application in cell imaging. J Am Chem Soc 130(24):7522–7523. https://doi.org/10.1021/ja800999u

    Article  CAS  Google Scholar 

  168. Zhang P, Liu W (2010) ZnO QD@PMAA-co-PDMAEMA nonviral vector for plasmid DNA delivery and bioimaging. Biomaterials 31(11):3087–3094. https://doi.org/10.1016/j.biomaterials.2010.01.007

    Article  CAS  Google Scholar 

  169. Wu W, Shen J, Banerjee P, Zhou S (2011) A multifunctional nanoplatform based on responsive fluorescent plasmonic ZnO-Au @ PEG hybrid nanogels. Adv Func Mater 21(15):2830–2839. https://doi.org/10.1002/adfm.201100201

    Article  CAS  Google Scholar 

  170. Zhang HJ, Xiong HM, Ren QG, Xia YY, Kong JL (2012) ZnO @ silica core-shell nanoparticles with remarkable luminescence and stability in cell imaging. J Mater Chem 22(26):13159–13165. https://doi.org/10.1039/C2JM30855J

    Article  CAS  Google Scholar 

  171. Cho NH, Cheong TC, Min JH et al (2011) A multifunctional core–shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat Nanotechnol 6(10):675–682. https://doi.org/10.1038/nnano.2011.149

    Article  CAS  Google Scholar 

  172. Tang X, Choo ESG, Li L, Ding J, Xue J (2010) Synthesis of ZnO nanoparticles with tunable emission colors and their cell labeling applications. Chem Mater 22(11):3383–3388. https://doi.org/10.1021/cm903869r

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All authors express their gratitude to the Central Research Cell (CRC) and Principal, Shivaji College, University of Delhi, for the encouragement and support. We would also like to thank Department of Biotechnology Star College Scheme and the Vice Chancellor, Netaji Subhas University of Technology for providing support for this review work.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, investigation, resources, supervision, resources, and writing—review and editing were performed by DY, NT, and HY. Data collections, methodology, investigations, and writing—review and editing were performed by NS, MK, KK, YK, and KS. Writing—review and editing were performed by AJ. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Nidhi Tyagi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Additional information

Handling Editor: Andrea de Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, D., Tyagi, N., Yadav, H. et al. Effect of various morphologies and dopants on piezoelectric and detection properties of ZnO at the nanoscale: a review. J Mater Sci 58, 10576–10599 (2023). https://doi.org/10.1007/s10853-023-08680-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08680-4

Navigation