Skip to main content

Advertisement

Log in

Recent progress of the effect of Co/Ni/Fe-based containing catalysts addition on hydrogen storage of Mg

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Efficient storage technology (absorption and desorption) is the key to boom the application of hydrogen as energy storage media. Among the solid-state hydrogen storage materials, magnesium-based material exhibits many advantages and is considered one of the most promising materials. However, the disadvantages including poor hydrogen absorption, desorption kinetics and high operating temperature still need to be modified. The addition of catalysts is one of the optimal ways to improve the kinetic performance of MgH2. However, transition metal-based catalysts exhibit excellent catalytic performance. This work mainly summarizes the addition of Co/Ni/Fe-based catalysts on the hydrogen storage performances of Mg. While examining the differences in the performance of each catalyst, some future research perspectives are also illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Zhang JJ, Zhang B, Xie XB, Ni C, Hou CX, Sun XQ, Yang XY, Zhang YP, Kimura H, Du W (2022) Recent advances of nanoconfinement in Mg related hydrogen storage materials: a minor review. Int J Min Met Mater. https://doi.org/10.1007/s12613-022-2519-z

    Article  Google Scholar 

  2. Fadonougbo JO, Kim HJ, Suh BC, Yim CD, Na TW, Park HK, Suh JY (2022) On the long-term cyclic stability of near-eutectic Mg–Mg2Ni alloys. Int J Hydrogen Energy 47:3939–3947. https://doi.org/10.1016/j.ijhydene.2021.11.025

    Article  CAS  Google Scholar 

  3. Huang T, Huang X, Hua C, Wang J, Liu H, Ma Z, Zou J, Ding W (2021) Enhancing hydrogen storage properties of MgH2 through addition of Ni/CoMoO4 nanorods. Mater Today Energy 19:100613. https://doi.org/10.1016/j.mtener.2020.100613

    Article  CAS  Google Scholar 

  4. Wu D, Yu HY, Hou CX, Du W, Song XH, Shi TS, Sun XQ, Wang B (2020) NiS nanoparticles assembled on biological cell walls-derived porous hollow carbon spheres as a novel battery-type electrode for hybrid supercapacitor. J Mater Sci 55:14431–14446. https://doi.org/10.1007/s10853-020-05022-6

    Article  CAS  Google Scholar 

  5. Lu ZY, Yu HJ, Lu X, Song MC, Wu FY, Zheng JG, Yuan ZF, Zhang LT (2021) Two-dimensional vanadium nanosheets as a remarkably effective catalyst for hydrogen storage in MgH2. Rare Met 40:3195–3204. https://doi.org/10.1007/s12598-021-01764-7

    Article  CAS  Google Scholar 

  6. Ma ZW, Panda S, Zhang QY, Sun FZ, Khan D, Ding WJ, Zou JX (2021) Improving hydrogen sorption performances of MgH2 through nanoconfinement in a mesoporous CoS nano-boxes scaffold. Chem Eng J 406:126790. https://doi.org/10.1016/j.cej.2020.126790

    Article  CAS  Google Scholar 

  7. Bhatnagar A, Shaz MA, Srivastava ON (2019) Synthesis of MgH2 using autocatalytic effect of MgH2. Int J Hydrog Energy 44:6738–6747. https://doi.org/10.1016/j.ijhydene.2019.01.163

    Article  CAS  Google Scholar 

  8. El-Eskandarany MS, Al-Ajmi F, Banyan M (2019) Mechanically-induced catalyzation of MgH2 powders with Zr2Ni-ball milling media. Catalysts 9:382. https://doi.org/10.3390/catal9040382

    Article  CAS  Google Scholar 

  9. Yadav DK, Chawla K, Jain IP, Lal C (2020) Catalytic effect on hydrogen de/absorption properties of MgH2-x wt% MM (x = 0, 10, 20, 30) nanomaterials. Environ Sci Pollut R 28:3866–3871. https://doi.org/10.1007/s11356-020-08986-9

    Article  CAS  Google Scholar 

  10. Shao YT, Gao HG, Tang QK, Liu YN, Liu JC, Zhu YF, Zhang JG, Li LQ, Hu XH, Ba ZX (2022) Ultra-fine TiO2 nanoparticles supported on three-dimensionally ordered macroporous structure for improving the hydrogen storage performance of MgH2. Appl Surf Sci 585:152561. https://doi.org/10.1016/j.apsusc.2022.152561

    Article  CAS  Google Scholar 

  11. Le TT, Pistidda C, Nguyen VH, Singh P, Raizada P, Klassen T, Dornheim M (2021) Nanoconfinement effects on hydrogen storage properties of MgH2 and LiBH4. Int J Hydrogen Energy 46:23723–23736. https://doi.org/10.1016/j.ijhydene.2021.04.150

    Article  CAS  Google Scholar 

  12. Chen LY, Liu XF, Zheng LR, Li YC, Guo X, Wan X, Liu QT, Shang JX, Shui JL (2019) Insights into the role of active site density in the fuel cell performance of Co-N-C catalysts. Appl Catal B Environ 256:117849. https://doi.org/10.1016/j.apcatb.2019.117849

    Article  CAS  Google Scholar 

  13. Gao ZJ, Li ZP, Liu BH (2021) Thermally stable La–Ni–B amorphous additives for enhancing hydrogen storage performance of MgH2. J Alloys Compd 888:161520. https://doi.org/10.1016/j.jallcom.2021.161520

    Article  CAS  Google Scholar 

  14. Wu D, Xie XB, Zhang YP, Zhang DM, Du W, Zhang XY, Wang B (2020) MnO2/carbon composites for supercapacitor: synthesis and electrochemical performance. Front Mater 7:2. https://doi.org/10.3389/fmats.2020.00002

    Article  Google Scholar 

  15. Duan CW, Tian YT, Wang XY, Wu MM, Fu D, Zhang YL, Lv W, Su ZH, Xue ZY, Wu Y (2022) Ni-CNTs as an efficient confining framework and catalyst for improving dehydriding/rehydriding properties of MgH2. Renew Energy 187:417–427. https://doi.org/10.1016/j.renene.2022.01.048

    Article  CAS  Google Scholar 

  16. Yu XB, Tang ZW, Sun DL, Ouyang LZ, Zhu M (2017) Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications. Prog Mater Sci 88:1–48. https://doi.org/10.1016/j.pmatsci.2017.03.001

    Article  CAS  Google Scholar 

  17. Wan X, Liu XF, Li YC, Yu RH, Zheng LR, Yan WS, Wang H, Xu M, Shui JL (2019) Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat Catal 2:259–268. https://doi.org/10.1038/s41929-019-0237-3

    Article  CAS  Google Scholar 

  18. Dreidy M, Mokhlis H, Mekhilef S (2017) Inertia response and frequency control techniques for renewable energy sources: a review. Renew Sustain Energy Rev 69:144–155. https://doi.org/10.1016/j.rser.2016.11.170

    Article  Google Scholar 

  19. Sun YH, Shen CQ, Lai QW, Liu W, Wang DW, Aguey-Zinsou KF (2018) Tailoring magnesium based materials for hydrogen storage through synthesis: current state of the art energy storage. Energy Storage Mater 10:168–198. https://doi.org/10.1016/j.ensm.2017.01.010

    Article  Google Scholar 

  20. Zhang QY, Huang YK, Xu L, Zang L, Guo HN, Jiao LF, Yuan HT, Wang YJ (2019) Highly dispersed MgH2 nanoparticle-graphene nanosheet composites for hydrogen storage. ACS Appl Energy Mater 2:3828–3835. https://doi.org/10.1021/acsanm.9b00694

    Article  CAS  Google Scholar 

  21. Zhou CQ, Hu CD, Li YT, Zhan QG (2020) Crystallite growth characteristics of Mg during hydrogen desorption of MgH2. Prog Nat Sci-Mater 30:246–250. https://doi.org/10.1016/j.pnsc.2020.02.003

    Article  CAS  Google Scholar 

  22. Wu ZJ, Fang JH, Liu N, Wu J, Kong LL (2021) The improvement in hydrogen storage performance of MgH2 enabled by multilayer Ti3C2. Micromach Basel 12:1190. https://doi.org/10.3390/mi12101190

    Article  Google Scholar 

  23. Zhang B, Xie XB, Wang YK, Hou CX, Sun XQ, Zhang YP, Yang XY, Yu RH, Du W (2022) In situ formation of multiple catalysts for enhancing the hydrogen storage of MgH2 by adding porous Ni3ZnC0.7/Ni loaded carbon nanotubes microspheres. J Magnes Alloys. https://doi.org/10.1016/j.jma.2022.07.004

    Article  Google Scholar 

  24. Lutz M, Bhouri M, Lindera M, Bürger I (2019) Adiabatic magnesium hydride system for hydrogen storage based on thermochemical heat storage: numerical analysis of the dehydrogenation. Appl Energy 236:1034–1048. https://doi.org/10.1016/j.apenergy.2018.12.038

    Article  CAS  Google Scholar 

  25. Rahmalina D, Rahman RA, SuwandiIsmail A (2020) The recent development on MgH2 system by 16 wt% nickel addition and particle size reduction through ball milling: a noticeable hydrogen capacity up to 5 wt% at low temperature and pressure. Int J Hydrog Energy 45:29046–29058. https://doi.org/10.1016/j.ijhydene.2020.07.209

    Article  CAS  Google Scholar 

  26. Bahou S, Labrim H, Lakhal M, Bhihi M, Hartiti B, Ez-Zahraouy H (2021) Magnesium vacancies and hydrogen doping in MgH2 for improving gravimetric capacity and desorption temperature. Int J Hydrog Energy 46:2322–2329. https://doi.org/10.1016/j.ijhydene.2020.10.078

    Article  CAS  Google Scholar 

  27. Zhu W, Ren L, Lu C, Xu H, Sun FZ, Ma ZW, Zou JX (2021) Nanoconfined and in situ catalyzed MgH2 self-assembled on 3D Ti3C2 MXene folded nanosheets with enhanced hydrogen sorption performances. ACS Nano 15:18494–18504. https://doi.org/10.1021/acsnano.1c08343

    Article  CAS  Google Scholar 

  28. Liu GH, Wang LX, Hu YWT, Sun CH, Leng HY, Li Q, Wu CZ (2021) Enhanced catalytic effect of TiO2@rGO synthesized by one-pot ethylene glycol-assisted solvothermal method for MgH2. J Alloys Compd 881:160644. https://doi.org/10.1016/j.jallcom.2021.160644

    Article  CAS  Google Scholar 

  29. Luo BS, Yao ZD, Xiao XZ, Hang ZM, Jiang FL, Liu MJ, Chen LX (2021) Hydrogen desorption from MgH2+NH4Cl/graphene composites at low temperatures. Mater Chem Phys 263:124342. https://doi.org/10.1016/j.matchemphys.2021.124342

    Article  CAS  Google Scholar 

  30. Samsatlia S, Samsatli NJ (2019) The role of renewable hydrogen and inter-seasonal storage in decarbonising heat-comprehensive optimisation of future renewable energy value chains. Appl Energy 233:854–893. https://doi.org/10.1016/j.apenergy.2018.09.159

    Article  Google Scholar 

  31. Shao HY, He LQ, Lin HJ, Li HW (2018) Progress and trends in magnesium-based materials for energy-storage research: a review. Energy Technol Ger 6:445–458. https://doi.org/10.1002/ente.201700401

    Article  Google Scholar 

  32. Pal P, Agarwal S, Tiwari A, Ichikawa T, Jain A, Dixit A (2022) Improved hydrogen desorption properties of exfoliated graphite and graphene nanoballs modified MgH2. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2022.04.188

    Article  Google Scholar 

  33. Xia GL, Chen XW, Zhao Y, Li XG, Guo ZP, Jensen CM, Gu QF, Yu XB (2017) High-performance hydrogen storage nanoparticles inside hierarchical porous carbon nanofibers with stable cycling. ACS Appl Mater Int 9:15502–15509. https://doi.org/10.1021/acsami.7b02589

    Article  CAS  Google Scholar 

  34. Zou R, Bolarin JA, Lei GT, Gao WB, Li Z, Cao HJ, Chen P (2022) Microwave-assisted reduction of Ti species in MgH2–TiO2 composite and its effect on hydrogen storage. Chem Eng J 450:138072. https://doi.org/10.1016/j.cej.2022.138072

    Article  CAS  Google Scholar 

  35. Jia Z, Zhao BZ, Zhao YY, Liu BG, Yuan JG, Zhang JG, Zhu YF, Wu Y, Li LQ (2022) Boron nitride supported nickel nanoparticles as catalyst for enhancing the hydrogen storage properties of MgH2. J Alloys Compd 927:166853. https://doi.org/10.1016/j.jallcom.2022.166853

    Article  CAS  Google Scholar 

  36. Dan L, Hu L, Wang H, Zhu M (2019) Excellent catalysis of MoO3 on the hydrogen sorption of MgH2. Int J Hydrog Energy 44:29249–29254. https://doi.org/10.1016/j.ijhydene.2019.01.285

    Article  CAS  Google Scholar 

  37. Yahya MS, Sulaiman NN, Mustafa NS, Halim Yap FA, Ismail M (2018) Improvement of hydrogen storage properties in MgH2 catalysed by K2NbF7. Int J Hydrog Energy 43:14532–14540. https://doi.org/10.1016/j.ijhydene.2018.05.157

    Article  CAS  Google Scholar 

  38. Song JZ, Zhao ZY, Zhao X, Fu RD, Han SM (2017) Hydrogen storage properties of MgH2 co-catalyzed by LaH3 and NbH. Int J Min Met Mater 24:1183–1191. https://doi.org/10.1007/s12613-017-1509-z

    Article  CAS  Google Scholar 

  39. Rahman MHA, Shamsudin MA, Klimkowicz A, Uematsu S, Takasaki A (2019) Effects of KNbO3 catalyst on hydrogen sorption kinetics of MgH2. Int J Hydrog Energy 44:29196–29202. https://doi.org/10.1016/j.ijhydene.2019.02.186

    Article  CAS  Google Scholar 

  40. Crivello JC, Dam B, Denys RV, Dornheim M, Grant DM, Huot J, Jensen TR, Jongh PD, Latroche M, Milanese C, Milčius D, Walker GS, Webb CJ, Zlotea C, Yartys VA (2016) Review of magnesium hydride-based materials: development and optimization. Appl Phys A Mater 122:97. https://doi.org/10.1007/s00339-016-9602-0

    Article  CAS  Google Scholar 

  41. Norberg NS, Arthur TS, Fredrick SJ, Prieto AL (2011) Size-dependent hydrogen storage properties of Mg nanocrystals prepared from solution. J Am Chem Soc 133:10679–10681. https://doi.org/10.1021/ja201791y

    Article  CAS  Google Scholar 

  42. Si TZ, Yin FH, Zhang XX, Zhang QA, Liu DM, Li YT (2023) In-situ formation of medium-entropy alloy nanopump to boost hydrogen storage in Mg-based alloy. Scr Mater 222:115052. https://doi.org/10.1016/j.scriptamat.2022.115052

    Article  CAS  Google Scholar 

  43. Gao HG, Shi R, Liu YN, Zhu YF, Zhang JG, Hu XH, Li LQ (2022) Enhanced hydrogen storage performance of magnesium hydride with incompletely etched Ti3C2Tx: the nonnegligible role of Al. Appl Surf Sci 600:154140. https://doi.org/10.1016/j.apsusc.2022.154140

    Article  CAS  Google Scholar 

  44. Jeon KJ, Moon HR, Ruminski AM, Jiang B, Kisielowski C, Bardhan R, Urban JJ (2011) Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. Nat Mater 10:286–290. https://doi.org/10.1038/nmat2978

    Article  CAS  Google Scholar 

  45. Xia GL, Tan YB, Chen XW, Sun DL, Guo ZP, Liu HK, Ouyang LZ, Zhu M, Yu XB (2015) Monodisperse magnesium hydride nanoparticles uniformly self-assembled on graphene. Adv Mater 27:5981–5988. https://doi.org/10.1016/j.pnsc.2016.12.015

    Article  CAS  Google Scholar 

  46. He DL, Wang YL, Wu CZ, Li Q, Ding WZ, SunHe CH (2015) Enhanced hydrogen desorption properties of magnesium hydride by coupling non-metal doping and nano-confinement. Appl Phys Lett 107:526–528. https://doi.org/10.1063/1.4938245

    Article  CAS  Google Scholar 

  47. Zlotea C, Cuevas F, Andrieux J, Ghimbeu CM, Leroy E, Leonel E, Sengmany S, Vix-Guterl C et al (2013) Tunable synthesis of (Mg-Ni)-based hydrides nanoconfined in templated carbon studied by in situ synchrotron diffraction. Nano Energy 2:12–20. https://doi.org/10.1016/j.nanoen.2012.07.005

    Article  CAS  Google Scholar 

  48. Liu HZ, Wang XH, Liu YG, Dong ZH, Cao GZ, Li SQ, Yan M (2013) Improved hydrogen storage properties of MgH2 by ball milling with AlH3: preparations, de/rehydriding properties, and reaction mechanisms. J Mater Chem A 1:12527–12535. https://doi.org/10.1039/c3ta11953j

    Article  CAS  Google Scholar 

  49. Anastasopol A, Pfeiffer TV, Middelkoop J, Lafont U, Canales-Perez RJ, Schmidt-Ott A, Mulder FM, Eijt SWH (2013) Reduced enthalpy of metal hydride formation for Mg–Ti nanocomposites produced by spark discharge generation. J Am Chem Soc 135:7891–7900. https://doi.org/10.1021/ja3123416

    Article  CAS  Google Scholar 

  50. Si TZ, Cao Y, Zhang QG, Sun DL, Ouyang LZ, Zhu M (2015) Enhanced hydrogen storage properties of a Mg–Ag alloy with solid dissolution of indium: a comparative study. J Mater Chem A 3:8581–8589. https://doi.org/10.1039/c5ta00292c

    Article  CAS  Google Scholar 

  51. Skripnyuk VM, Rabkin E, Estrin Y, Lapouok R (2009) Improving hydrogen storage properties of magnesium based alloys by equal channel angular pressing. Int J Hydrog Energy 34:6320–6324. https://doi.org/10.1016/j.ijhydene.2009.05.136

    Article  CAS  Google Scholar 

  52. Braga MH, El-Azab A (2014) The catalytic reactions in the Cu–Li–Mg–H high capacity hydrogen storage system. Phys Chem Chem Phys 16:23012–23025. https://doi.org/10.1039/c4cp01815j

    Article  CAS  Google Scholar 

  53. Gutfleisch O, Dal-Toe S, Herrich M, Handstein A, Pratt A (2005) Hydrogen sorption properties of Mg–1 wt.% Ni–0.2 wt.% Pd prepared by reactive milling. J Alloys Compd 404:413–416. https://doi.org/10.1016/j.jallcom.2004.09.083

    Article  CAS  Google Scholar 

  54. Gao SC, Liu HZ, Xu L, Li SQ, Wang XH, Yan M (2018) Hydrogen storage properties of nano-CoB/CNTs catalyzed MgH2. J Alloys Compd 735:635–642. https://doi.org/10.1016/j.jallcom.2017.11.047

    Article  CAS  Google Scholar 

  55. Wang H, Zhong HC, Ouyang LZ, Liu JW, Sun DL, Zhang QG, Zhu M (2014) Fully reversible de/hydriding of Mg base solid solutions with reduced reaction enthalpy and enhanced kinetics. J Phys Chem C 118:12087–12096. https://doi.org/10.1021/jp411265b

    Article  CAS  Google Scholar 

  56. Kato S, Borgschulte A, Bielmann M, Zuttel A (2012) Interface reactions and stability of a hydride composite (NaBH4+MgH2). Phys Chem Chem Phys 14:8360–8368. https://doi.org/10.1039/c2cp23491b

    Article  CAS  Google Scholar 

  57. Zhou CS, Fang ZG, Lu J, Zhang XY (2013) Thermodynamic and kinetic destabilization of magnesium hydride using Mg–In solid solution alloys. J Am Chem Soc 135:10982–10985. https://doi.org/10.1021/ja4058794

    Article  CAS  Google Scholar 

  58. Au YS, Ponthieu M, Zwienen-VanR ZC, Cuevas F, De-Jong KP, De-Jongh PE (2013) Synthesis of Mg2Cu nanoparticles on carbon supports with enhanced hydrogen sorption kinetics. J Phys Chem A 1:9983–9991. https://doi.org/10.1039/c3ta10926g

    Article  CAS  Google Scholar 

  59. Zheng SY, Li ZP, Bendersky LA (2013) Understanding the role of vanadium in enhancing the low-temperature hydrogenation kinetics of an Mg thin film. Acs Appl Mater Int 5:6968–6974. https://doi.org/10.1021/am402450w

    Article  CAS  Google Scholar 

  60. Lin HJ, Tang JJ, Yu Q, Wang H, Ouyang LZ, Zhao YJ, Liu JW, Wang WH, Zhu M (2014) Symbiotic CeH2.73/CeO2 catalyst: a novel hydrogen pump. Nano Energy 9:80–87. https://doi.org/10.1016/j.nanoen.2014.06.026

    Article  CAS  Google Scholar 

  61. Zhang LT, Xiao XX, Xu CC, Zheng JG, Fan XL, Shao J, Li SQ, Ge HW, Wang QD, Chen LX (2015) Remarkably improved hydrogen storage performance of MgH2 catalyzed by multivalence NbHx nanoparticles. J Phys Chem C 119:8554–8562. https://doi.org/10.1021/acs.jpcc.5b01532

    Article  CAS  Google Scholar 

  62. Hanada N, Ichikawa T, Fujii H (2005) Catalytic effect of nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling. J Phys Chem B 109:7188–7194. https://doi.org/10.1021/jp044576c

    Article  CAS  Google Scholar 

  63. Wang YY, Xin GB, Li W, Wang W, Wang CY, Zheng J, Li XG (2014) Superior electrochemical hydrogen storage properties of binary Mg–Y thin films. Int J Hydrog Energy 39:4373–4379. https://doi.org/10.1016/j.ijhydene.2013.12.181

    Article  CAS  Google Scholar 

  64. Zhang M, Xiao XZ, Hang ZM, Chen M, Wang XC, Zhang N, Chen LX (2021) Superior catalysis of NbN nanoparticles with intrinsic multiple valence on reversible hydrogen storage properties of magnesium hydride. Int J Hydrog Energy 46:814–822. https://doi.org/10.1016/j.ijhydene.2020.09.173

    Article  CAS  Google Scholar 

  65. Song MY, Bobet JL, Darriet B (2002) Improvement in hydrogen sorption properties of Mg by reactive mechanical grinding with Cr2O3, Al2O3 and CeO2. J Alloys Compd 340:256–262. https://doi.org/10.1016/s0925-8388(02)00019-1

    Article  CAS  Google Scholar 

  66. Zhang Y, Wu FY, Guemou S, Yu HJ, Zhang LT, Wang YJ (2022) Constructing Mg2Co–Mg2CoH5 nano hydrogen pumps from LiCoO2 nanosheets for boosting the hydrogen storage property of MgH2. Dalton Trans. https://doi.org/10.1039/d2dt02090d

    Article  Google Scholar 

  67. Liu P, Lian JJ, Chen HP, Liu XJ, Chen YL, Zhang TH, Yu H, Lu GJ, Zhou SX (2020) In-situ synthesis of Mg2Ni–Ce6O11 catalyst for improvement of hydrogen storage in magnesium. Chem Eng J 385:123448. https://doi.org/10.1016/j.cej.2019.123448

    Article  CAS  Google Scholar 

  68. Yang XL, Hou QH, Yu LB, Zhang JQ (2021) Improvement of the hydrogen storage characteristics of MgH2 with a flake Ni nano-catalyst composite. Dalton Trans 50:1797. https://doi.org/10.1039/d0dt03627g

    Article  CAS  Google Scholar 

  69. Ha TJ, Cho YW, Lee SI, Suh JY, Lee JH, Shim JH, Lee YS (2021) Hydrogen occupation in Ti4M2Oy compounds (M = Fe Co, Ni, Cu, and y = 0, 1) and their hydrogen storage characteristics. J Alloys Compd 891:162050. https://doi.org/10.1016/j.jallcom.2021.162050

    Article  CAS  Google Scholar 

  70. Abdel SA, Alfuhaidi AK (2021) Enhancement of hydrogen storage capacities of Co and Pt functionalized h-BN nanosheet: theoretical study. Vacuum 183:109838. https://doi.org/10.1016/j.vacuum.2020.109838

    Article  CAS  Google Scholar 

  71. Wang QS, Jin FF, Liu DY, Liu H, Chen P, Liu WQ, Zhao JX (2020) Improved electrochemical properties of Co0.9Cu0.1Si hydrogen storage alloy by covering with Co/rGO composite. Solid State Sci 108:106382. https://doi.org/10.1016/j.solidstatesciences.2020.106382

    Article  CAS  Google Scholar 

  72. Oelerich W, Klassen T, Bormann R (2001) Comparison of the catalytic effects of V, V2O5, VN, and VC on the hydrogen sorption of nanocrystalline Mg. J Alloys Compd 322:L5–L9. https://doi.org/10.1016/s0925-8388(01)01173-2

    Article  CAS  Google Scholar 

  73. Wang Y, Li L, An CH, Wang YJ, Chen CC, Jiao LF, Yuan HT (2014) Facile synthesis of TiN decorated graphene and its enhanced catalytic effects on dehydrogenation performance of magnesium hydride. Nanoscale 6:6684–6691. https://doi.org/10.1039/c4nr00474d

    Article  CAS  Google Scholar 

  74. Gao P, Yang SQ, Xue Z, Liu GB, Zhang GL, Wang LQ, Li GB, Sun YZ, Chen YJ (2012) High energy ball-milling preparation of Co–B amorphous alloy with high electrochemical hydrogen storage ability. J Alloys Compd 539:90–96. https://doi.org/10.1016/j.jallcom.2012.06.008

    Article  CAS  Google Scholar 

  75. Khan D, Zou JX, Pan MG, Ma ZW, Zhu W, Huang TP, Zeng XQ, Ding WJ (2019) Hydrogen storage properties of nanostructured 2MgH2Co powders: THE effect of high-pressure compression. Int J Hydrog Energy 44:15146–15158. https://doi.org/10.1016/j.ijhydene.2019.04.077

    Article  CAS  Google Scholar 

  76. Zhu W, Panda S, Lu C, Ma ZW, Khan D, Dong JJ, Sun FZ, Xu H et al (2020) Using a self-assembled two-dimensional MXene-based catalyst (2D-Ni@Ti3C2) to enhance hydrogen storage properties of MgH2. ACS Appl Mater Int 12:50333–50343. https://doi.org/10.1021/acsami.0c12767

    Article  CAS  Google Scholar 

  77. Liu B, Zhang B, Chen X, Lv Y, Huang H, Yuan J, Lv W, Wu Y (2022) Remarkable enhancement and electronic mechanism for hydrogen storage kinetics of Mg nano-composite by a multi-valence Co-based catalyst. Mater Today Nano 17:100168. https://doi.org/10.1016/j.mtnano.2021.100168

    Article  CAS  Google Scholar 

  78. Schaefer ZL, Weeber KM, Misra R, Schiffer P, Schaak RE (2011) Bridging hcp-Ni and Ni3C via a Ni3C1x solid solution: tunable composition and magnetism in colloidal nickel carbide nanoparticles. Chem Rev 23:2475–2480. https://doi.org/10.1021/cm200410s

    Article  CAS  Google Scholar 

  79. Lee DH, Myunggoo K, Seung-Min P, Hyun J (2016) Electrochemical hydrogen storage performance of hierarchical Co metal flower-like microspheres. Electrochim Acta 217:132–138. https://doi.org/10.1016/j.electacta.2016.09.021

    Article  CAS  Google Scholar 

  80. Zhang JQ, Hou QH, Guo XT, Yang XL (2022) Achieve high-efficiency hydrogen storage of MgH2 catalyzed by nanosheets CoMoO4 and rGO. J Alloys Compd 911:165153. https://doi.org/10.1016/j.jallcom.2022.165153

    Article  CAS  Google Scholar 

  81. Zepon G, Leiva DR, Strozi RB, Terra BCM, Figueroa SJA, Floriano R, Jorge AM Jr, Botta WJ (2017) Structural characterization and hydrogen storage properties of MgH2–Mg2CoH5 nanocomposites. Int J Hydrog Energy 42:14593–14601. https://doi.org/10.1016/j.ijhydene.2017.04.237

    Article  CAS  Google Scholar 

  82. Yang XL, Ji L, Yan NH, Sun Z, Lu X, Zhang LT, Zhu XQ, Chen LX (2019) Superior catalytic effects of FeCo nanosheets on MgH2 for hydrogen storage. Dalton Trans. https://doi.org/10.1039/c9dt02084e

    Article  Google Scholar 

  83. Huot J, Boily S, Akiba E, Schulz R (1998) Direct synthesis of Mg2FeH6 by mechanical alloying. J Alloys Compd 280:306–309. https://doi.org/10.1016/s0925-8388(98)00725-7

    Article  CAS  Google Scholar 

  84. Zhang LT, Cai ZL, Zhu XQ, Yao ZD, Sun Z, Ji L, Yan NH, Xiao BB, Chen LX (2019) Two-dimensional ZrCo nanosheets as highly effective catalyst for hydrogen storage in MgH2. J Alloys Compd 805:295–302. https://doi.org/10.1016/j.jallcom.2019.07.085

    Article  CAS  Google Scholar 

  85. Zhao Y, Li T, Huang HX, Xu TT, Liu BG, Zhang B, Yuan JG, Wu Y (2023) A highly efficient hydrolysis of MgH2 catalyzed by NiCo@C bimetallic synergistic effect. J Mater Sci Technol 137:176–183. https://doi.org/10.1016/j.jmst.2022.08.005

    Article  Google Scholar 

  86. Yu H, Bennici S, Auroux A (2014) Hydrogen storage and release: kinetic and thermodynamic studies of MgH2 activated by transition metal nanoparticles. Int J Hydrog Energy 39:11633–11641. https://doi.org/10.1016/j.ijhydene.2014.05.069

    Article  CAS  Google Scholar 

  87. Lan ZQ, Zeng L, Jiong G, Huang XT, Liu HZ, Hua N, Guo J (2019) Synthetical catalysis of nickel and graphene on enhanced hydrogen storage properties of magnesium. Int J Hydrog Energy 44:24849–24855. https://doi.org/10.1016/j.ijhydene.2019.07.247

    Article  CAS  Google Scholar 

  88. Zhang QY, Zang L, Huang YK, Gao PY, Jiao LF, Yuan HT, Wang YJ (2017) Improved hydrogen storage properties of MgH2 with Ni-based compounds. Int J Hydrog Energy 42:24247–24255. https://doi.org/10.1016/j.ijhydene.2017.07.220

    Article  CAS  Google Scholar 

  89. El-Eskandarany MS, Banyan M, Al-Ajmi F (2019) Synergistic effect of new ZrNi5/Nb2O5 catalytic agent on storage behavior of nanocrystalline MgH2 powders. Catalysts 9:306. https://doi.org/10.3390/catal9040306

    Article  CAS  Google Scholar 

  90. Zhou XC, Zhao HB, Fu ZB, Qu J, Zhong ML, Yang X, Yi Y, Wang CY (2018) Nanoporous Ni with high surface area for potential hydrogen storage application. Nanomater Basel 8:394. https://doi.org/10.3390/nano8060394

    Article  CAS  Google Scholar 

  91. Shao HX, Huang YK, Guo HN, Liu YF, Guo YS, Wang YJ (2021) Thermally stable Ni MOF catalyzed MgH2 for hydrogen storage. Int J Hydrog Energy 46:37977–37985. https://doi.org/10.1016/j.ijhydene.2021.09.045

    Article  CAS  Google Scholar 

  92. Gao HG, Shi R, Shao YT, Liu YN, Zhu YF, Zhang JG, Li LQ (2022) Catalysis derived from flower-like Ni MOF towards the hydrogen storage performance of magnesium hydride. Int J Hydrog Energy 47:9346–9356. https://doi.org/10.1016/j.ijhydene.2022.01.020

    Article  CAS  Google Scholar 

  93. Yao PY, Jiang Y, Liu Y, Wu CZ, Chou KC, Lyu T, Li Q (2020) Catalytic effect of Ni@rGO on the hydrogen storage properties of MgH2. J Magnes Alloys 8:461–471. https://doi.org/10.1016/j.jma.2019.06.006

    Article  CAS  Google Scholar 

  94. Lei CM, Su CJ, Liao JA, Luo YJ, Yuan WL (2012) Solvothermal synthesis of Mg–Ni/C nanocomposite for hydrogen storage using vitamin C as carbon source. Int J Hydrog Energy 37:13849–13854. https://doi.org/10.1016/j.ijhydene.2012.04.079

    Article  CAS  Google Scholar 

  95. El-Eskandarany MS, Shaban E, Ali N, Aldakheel F, Alkandary A (2016) In-situ catalyzation approach for enhancing the hydrogenation/dehydrogenation kinetics of MgH2 powders with Ni particles. Sci Rep UK 6:37335. https://doi.org/10.1038/srep37335

    Article  CAS  Google Scholar 

  96. Chen M, Pu YH, Li ZY, Huang G, Liu XF, Lu Y, Tang WK, Xu L, Liu SY, Yu RH, Shui JL (2020) Synergy between metallic components of MoNi alloy for catalyzing highly efficient hydrogen storage of MgH2. Nano Res 13:2063–2071. https://doi.org/10.1007/s12274-020-2808-7

    Article  CAS  Google Scholar 

  97. Xie XB, Chen M, Hu MM, Liu T (2018) Recoverable Ni2Al3 nanoparticles and their catalytic effects on Mg-based nanocomposite during hydrogen absorption and desorption cycling. Int J Hydrog Energy 43:21856–21863. https://doi.org/10.1016/j.ijhydene.2018.10.034

    Article  CAS  Google Scholar 

  98. Chen JG (1996) Carbide and nitride overlayers on early transition metal surfaces: preparation, characterization, and reactivities. Chem Rev 96:1477–1498. https://doi.org/10.1021/cr950232u

    Article  CAS  Google Scholar 

  99. Oyama ST (1992) Crystal structure and chemical reactivity of transition metal carbides and nitrides. J Solid State Chem 96:442–445. https://doi.org/10.1016/s0022-4596(05)80279-8

    Article  CAS  Google Scholar 

  100. Cui J, Liu JW, Wang H, Ouyang LZ, Sun DL, Zhu M, Yao XD (2014) MgTM (TM: Ti, Nb, V Co, Mo or Ni) core-shell like nanostructures: synthesis, hydrogen storage performance and catalytic mechanism. J Mater Chem A 2:9645–9655. https://doi.org/10.1039/c4ta00221k

    Article  CAS  Google Scholar 

  101. Xie XB, Ma XJ, Liu P, Shang JX, Li XG, Liu T (2017) Formation of multiple-phase catalysts for the hydrogen storage of Mg nanoparticles by adding flowerlike NiS. ACS Appl Mater Int 9:5937–5946. https://doi.org/10.1021/acsami.6b13222

    Article  CAS  Google Scholar 

  102. Wu YF, Zhao W, Jiang LJ, Li ZN, Guo XM, Ye JH, Yuan BL, Wang SM, Hao L (2021) Effect of Fe and Al on hydrogen storage properties of 75 V-Ti–Cr alloys. J Alloys Compd 887:161181. https://doi.org/10.1016/j.jallcom.2021.161181

    Article  CAS  Google Scholar 

  103. Abdul JM, Chown LH (2016) Influence of Fe on hydrogen storage properties of V-rich ternary alloys. Int J Hydrog Energy 41:2781–2787. https://doi.org/10.1016/j.ijhydene.2015.11.154

    Article  CAS  Google Scholar 

  104. Ma XF, Ding X, Chen RR, Gao XF, Su YQ, Cui HZ (2022) Enhanced hydrogen storage properties of ZrTiVAl1xFex high-entropy alloys by modifying the Fe content. Rsc Adv 12:11272. https://doi.org/10.1039/d2ra01064j

    Article  CAS  Google Scholar 

  105. Park KB, Fadonougbo JO, Park CS, Lee JH, Na TW, Kang HS, Ko WS, Park HK (2021) Effect of Fe substitution on first hydrogenation kinetics of TiFe-based hydrogen storage alloys after air exposure. Int J Hydrog Energy 46:30780–30789. https://doi.org/10.1016/j.ijhydene.2021.06.188

    Article  CAS  Google Scholar 

  106. Gattia DM, Jangir M, Jain IP (2019) Study on nanostructured MgH2 with Fe and its oxides for hydrogen storage applications. J Alloys Compd 801:188–191. https://doi.org/10.1016/j.jallcom.2019.06.067

    Article  CAS  Google Scholar 

  107. Bassetti A, Bonetti E, Pasquini L, Montone A, Grbovic J, Vittori Antisari M (2005) Hydrogen desorption from ball milled MgH2 catalyzed with Fe. Europhys Lett B 43:19–27. https://doi.org/10.1140/epjb/e2005-00023-9

    Article  CAS  Google Scholar 

  108. Antiqueira FJ, Leiva DR, Zepon G, De Cunha BFRF, Figueroa SJA, Botta WJ (2020) Fast hydrogen absorption/desorption kinetics in reactive milled Mg-8 mol% Fe nanocomposites. Int J Hydrog Energy 45:12408–12418. https://doi.org/10.1016/j.ijhydene.2020.02.213

    Article  CAS  Google Scholar 

  109. Song MC, Zhang LT, Yao ZD, Zheng JG, Shang DH, Chen LX, Li H (2022) Unraveling the degradation mechanism for the hydrogen storage property of Fe nanocatalyst-modified MgH2. Inorg Chem Front 9:2874. https://doi.org/10.1039/d2qi00863g

    Article  CAS  Google Scholar 

  110. Hudson MSL, Takahashi K, Ramesh A, Awasthi S, Ghosh AK, Ravindrana P, Srivastava ON (2016) Graphene decorated with Fe nanoclusters for improving the hydrogen sorption kinetics of MgH2-experimental and theoretical evidence. Catal Sci Technol 6:261–268. https://doi.org/10.1039/c5cy01016k

    Article  Google Scholar 

  111. Zhang LT, Jia L, Yao ZD, Yan NH, Sun Z, Yang XL, Zhu XQ, Hu SL, Chen LX (2019) Facile synthesized Fe nanosheets as superior active catalyst for hydrogen storage in MgH2. Int J Hydrog Energy 44:21955–21964. https://doi.org/10.1016/j.ijhydene.2019.06.065

    Article  CAS  Google Scholar 

  112. Liang J, Zhang LT, Yang XL, Zhu XQ, Chen LX (2020) The remarkably improved hydrogen storage performance of MgH2 by the synergetic effect of an FeNi/rGO nanocomposite. Dalton Trans 49:4146–4154. https://doi.org/10.1039/d0dt00230e

    Article  CAS  Google Scholar 

  113. Fu YK, Zhang L, Li Y, Guo SY, Yu H, Wang WF, Ren KL, Zhang W, Han SM (2022) Effect of ternary transition metal sulfide FeNi2S4 on hydrogen storage performance of MgH2. J Magnes Alloys. https://doi.org/10.1016/j.jma.2021.11.033

    Article  Google Scholar 

  114. Yong H, Wei X, Hu JF, Yuan ZM, Wu M, Zhao DL, Zhang YH (2020) Influence of Fe@C composite catalyst on the hydrogen storage properties of Mg–Ce–Y based alloy. Renew Energy 162:2153–2165. https://doi.org/10.1016/j.renene.2020.10.047

    Article  CAS  Google Scholar 

  115. Pukazhselvan D, Nasani N, Yang T, Bdikin I, Kovalevsky AV, Fagg DP (2016) Dehydrogenation properties of magnesium hydride loaded with Fe, Fe-C, and Fe-Mg additives. Chem Phys Chem 18:287–291. https://doi.org/10.1002/cphc.201601078

    Article  CAS  Google Scholar 

  116. Yang K, Qin HY, Lv JN, Yu RJ, Chen X, Zhao ZD, Li YJ, Zhang F et al (2021) The effect of graphite and Fe2O3 addition on hydrolysis kinetics of Mg-based hydrogen storage materials. Int J Photoenergy. https://doi.org/10.1155/2021/6651541

    Article  Google Scholar 

  117. Ren SQ, Fu YK, Zhang L, Cong L, Xie YC, Yu H, Wang WF, Li Y et al (2022) An improved hydrogen storage performance of MgH2 enabled by core-shell structure Ni/Fe3O4@MIL. J Alloys Compd 892:162048. https://doi.org/10.1016/j.jallcom.2021.162048

    Article  CAS  Google Scholar 

  118. Ma ZW, Zou JX, Khan D, Zhu W, Hu CZ, Zeng XQ, Ding WJ (2019) Preparation and hydrogen storage properties of MgH2-trimesic acid-TM MOF (TM= Co, Fe) composites. J Mater Sci Technol 35:2132–2143. https://doi.org/10.1016/j.jmst.2019.05.049

    Article  CAS  Google Scholar 

  119. Ma ZW, Zhang QY, Zhu W, Khan D, Hu CZ, Huang TP, Ding WJ, Zou JX (2020) Nano Fe and Mg2Ni derived from TMA-TM (TM= Fe, Ni) MOFs as synergetic catalysts for hydrogen storage in MgH2. Sustain Energy Fuels 4:2192–2200. https://doi.org/10.1039/d0se00081g

    Article  CAS  Google Scholar 

  120. Sun Z, Lu X, Michael FN, Yan NH, Xiao JK, Su SH, Zhang LT (2020) Enhancing hydrogen storage properties of MgH2 by transition metals and carbon materials. Front Chem 8:552. https://doi.org/10.3389/fchem.2020.00552

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by research programs of National Natural Science Foundation of China (52101274), and Natural Science Foundation of Shandong Province (No. ZR2020QE011, ZR2022ME089), Youth Top Talent Foundation of Yantai University (2219008), Graduate Innovation Foundation of Yantai University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiubo Xie or Wei Du.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Z., Xiao, L., Zhang, B. et al. Recent progress of the effect of Co/Ni/Fe-based containing catalysts addition on hydrogen storage of Mg. J Mater Sci 58, 46–62 (2023). https://doi.org/10.1007/s10853-022-07971-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07971-6

Navigation