Skip to main content
Log in

Outstanding cooperation of all-inorganic CsPbI3 perovskite with TiO2 forming composites and heterostructures for photodegradation

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Semiconductor materials have a great potential to be used as a photocatalyst in several applications from dye degradation and water treatment up to solar cells. All-inorganic halide perovskite CsPbI3 and TiO2 with anatase structure were synthesized, studied, and compared as single samples and also forming heterostructures and composites. Structural, morphological, and optical characterizations reveal the successful synthesis of CsPbI3 and TiO2 compounds and the formation of both composites and heterostructures CsPbI3/TiO2. Methylene blue organic dye was used as a model for the study and evaluation of the photocatalytic activity exhibited by the produced semiconducting samples. The photocatalytic activity for MB degradation in methanol was investigated separately for TiO2 and CsPbI3 and their formation as composites and heterostructures. We have observed that when CsPbI3 perovskite is combined with TiO2, a cooperative mechanism involving the formation of intermediate phases promotes photobleaching with a kinetic constant rate much higher than both compounds separated or forming heterostructures. The CsPbI3/TiO2 causes MB mineralization by an oxygen-dependent mechanism. On the other hand, very high constant rate of the MB photodegradation can be observed by CsPbI3 perovskite even in a solution without the presence of dissolved oxygen. The presence of structural defects interstitials, vacancies, and under-coordinated Pb2+ ions on the surface of the perovskite particles may be formed during light irradiation and act as catalytic centers. The kinetic constant rate and the mechanism of MB photobleaching and the occurrence of dye mineralization can be tuned in feasible by simple strategies involving the formation of heterostructure and composites.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author (J.A.S.) upon reasonable request.

References

  1. Shen S, Kronawitter C, Kiriakidis G (2017) An overview of photocatalytic materials. J Mater 3(1):1–2. https://doi.org/10.1016/j.jmat.2016.12.004

    Article  Google Scholar 

  2. Fresno F, Portela R, Suárez S, Coronado JM (2014) Photocatalytic materials: recent achievements and near future trends. J Mater Chem A 2(9):2863–2884. https://doi.org/10.1039/c3ta13793g

    Article  CAS  Google Scholar 

  3. Serpone N (2012) Emeline AV (2012) semiconductor photocatalysis: past, present, and future outlook. J Phys Chem Lett 3(5):673–677. https://doi.org/10.1021/jz300071j

    Article  CAS  Google Scholar 

  4. Stranks SD, Snaith HJ (2015) Metal-halide perovskites for photovoltaic and light-emitting devices. Nat Nanotechnol 10:391–402. https://doi.org/10.1038/nnano.2015.90

    Article  CAS  Google Scholar 

  5. Veiga ET, Fernandes SL, Graeff CFO, Polo AS (2021) Compact TiO2 blocking-layer prepared by LbL for perovskite solar cells. Sol Energy 214:510–516. https://doi.org/10.1016/j.solener.2020.11.024

    Article  CAS  Google Scholar 

  6. Kamat PV (2007) Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J Phys Chem C 111:2834–2860. https://doi.org/10.1021/jp066952u

    Article  CAS  Google Scholar 

  7. Zhu D, Zhou Q (2019) Action and mechanism of semiconductor photocatalysis on degradation of organic pollutants in water treatment: a review. Environ Nanotechnol Monit Manag 100255:1–11. https://doi.org/10.1016/j.enmm.2019.100255

    Article  Google Scholar 

  8. Guo Q, Zhou C, Ma Z, Ren Z, Fan H, Yang X (2016) Elementary photocatalytic chemistry on TiO2 surfaces. Chem Soc Rev 45(13):3701–3730. https://doi.org/10.1039/c5cs00448a

    Article  CAS  Google Scholar 

  9. Panayotov DA, Burrows SP, Morris JR (2012) Photooxidation mechanism of methanol on rutile TiO2 nanoparticles. J Phys Chem C 116(11):6623–6635. https://doi.org/10.1021/jp209215c

    Article  CAS  Google Scholar 

  10. Zhou H, Qu Y, Zeid T, Duan X (2012) Towards highly eficiente photocatalysts using semiconductor nanoarchitectures. Energy Environ Sci 5:6732–6743. https://doi.org/10.1039/C2EE03447F

    Article  CAS  Google Scholar 

  11. Huang H, Pradhan B, Hofkens J, Roeffaers MBJ, Steele JA (2020) Solar-driven metal halide perovskite photocatalysis: design, stability, and performance. ACS Energy Lett 5:1107–1123. https://doi.org/10.1021/acsenergylett.0c00058

    Article  CAS  Google Scholar 

  12. Manos D, Miserli K, Konstantinou I (2020) Perovskite and spinel catalysts for sulfate radical-based advanced oxidation of organic pollutants in water and wastewater systems. Catalysts 10(11):1299. https://doi.org/10.3390/catal10111299

    Article  CAS  Google Scholar 

  13. Askeland DR (2003) The science and engineering of materials, 3rd edn. Springer, Dordrecht, pp 1–4

    Google Scholar 

  14. Sze SM, Kwok K (2006) Physics of semiconductor devices 2006, 1st edn. Wiley, New York

    Book  Google Scholar 

  15. Ha ST, Su R, Xing J, Zhang Q, Xiong Q (2017) Metal halide perovskite nanomaterials: synthesis and applications. Chem Sci 8:2522–2536. https://doi.org/10.1039/c6sc04474c

    Article  CAS  Google Scholar 

  16. Brenner TM, Egger DA, Kronik L, Hodes G, Cahen D (2016) Hybrid organic-inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat Rev Mater 1:1–17. https://doi.org/10.1038/natrevmats.2015.7

    Article  CAS  Google Scholar 

  17. Herz LM (2016) Charge-carrier dynamics in organic-inorganic metal halide perovskites. Annu Rev Phys Chem 67:65–89. https://doi.org/10.1146/annurev-physchem-040215-112222

    Article  CAS  Google Scholar 

  18. Wehrenfennig C, Eperon GE, Johnston MB, Snaith HJ, Herz LM (2014) High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv Mater 26:1584–1589. https://doi.org/10.1002/adma.201305172

    Article  CAS  Google Scholar 

  19. Jin H, Debroye E, Keshavarz M, Scheblykin IG, Roeffaers MBJ, Hofkens J (2020) Steele JA (2002) It’s a trap! On the nature of localised states and charge trapping in lead halide perovskites. Mater Horiz 7:397–410. https://doi.org/10.1039/c9mh00500e

    Article  CAS  Google Scholar 

  20. Ma T, Wang S, Zhang Y, Zhang K, Yi L (2019) The development of all-inorganic CsPbX3 perovskite solar cells. J Mater Sci. https://doi.org/10.1007/s10853-019-03974-y

    Article  Google Scholar 

  21. Huynh KA, Nguyen DLT, Nguyen V, Vo DN, Trinh QT, Nguyen TP, Van Le Q (2020) Halide perovskite photocatalysis: progress and perspectives. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.6342

    Article  Google Scholar 

  22. Gomez CMR, Pan S, Braga HM, Oliveira LS, Dalpian GM, Biesold-McGee GV, Lin Z, Santos SF, Souza JA (2020) A possible charge transfer induced conductivity enhancement in TiO2 microtubes decorated with perovskite CsPbBr3 nanocrystals. Langmuir 36:5408–5416. https://doi.org/10.1021/acs.langmuir.9b03871

    Article  CAS  Google Scholar 

  23. Wada N, Yokomizo Y, Yogi C, Katayama M, Tanaka A, Kojima K, Ozutsumi K (2018) Effect of adding Au nanoparticles to TiO2 films on crystallization, phase transformation, and photocatalysis. J Mater Res 33(04):467–481. https://doi.org/10.1557/jmr.2018.16

    Article  CAS  Google Scholar 

  24. Huang A, He Y, Zhou Y, Zhou Y, Yang Y, Zhang J, Yang J (2018) A review of recent applications of porous metals and metal oxide in energy storage, sensing and catalysis. J Mater Sci. https://doi.org/10.1007/s10853-018-2961-5

    Article  Google Scholar 

  25. Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol, C 13(3):169–189. https://doi.org/10.1016/j.jphotochemrev.2012.06.001

    Article  CAS  Google Scholar 

  26. Bakbolat B, Daulbayev C, Sultanov F, Beissenov R, Umirzakov A, Mereke A, Chuprakov I (2020) Recent developments of TiO2-based photocatalysis in the hydrogen evolution and photodegradation: a review. Nanomaterials 10(9):1790. https://doi.org/10.3390/nano10091790

    Article  CAS  Google Scholar 

  27. Molina J, Zúñiga C, Moreno M, Calleja W, Rosales P, Ambrosio R, Sánchez JL (2014) Physical and electrical characterization of TiO2 particles after high temperature processing and before and after ultraviolet irradiation. Can J Phys 92(7/8):832–837. https://doi.org/10.1139/cjp-2013-0603

    Article  CAS  Google Scholar 

  28. Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Soc Rev 93:341–357. https://doi.org/10.1021/cr00017a016

    Article  CAS  Google Scholar 

  29. Zhao Y, Wang C, Hu X, Fan J (2021) Recent progress in CsPbX3 perovskite nanocrystals for enhanced stability and photocatalytic applications. ChemNanoMat 7(7):789–804. https://doi.org/10.1002/cnma.202100094

    Article  CAS  Google Scholar 

  30. Nawaz A, Kuila A, Mishra NS, Leong KH, Sim LC, Saravanan P, Jang M (2019) Challenges and implication of full solar spectrum-driven photocatalyst. Rev Chem Eng 37(4):533–560. https://doi.org/10.1515/revce-2018-0069

    Article  CAS  Google Scholar 

  31. Qian R, Zong H, Schneider J, Zhou G, Zhao T, Li Y, Hong Pan J (2018) Charge carrier trapping, recombination and transfer during TiO2 photocatalysis: an overview. Catal Today 335:1–47. https://doi.org/10.1016/j.cattod.2018.10.053

    Article  CAS  Google Scholar 

  32. Kronawitter CX, Vayssieres L, Shen SH, Guo LJ, Wheeler DA, Zhang JZ, Antoun BR, Mao SS (2011) A perspective on solar-driven water splitting with all-oxide hetero-nanostructures. Energy Environ Sci 4:3889–3999. https://doi.org/10.1039/c1ee02186a

    Article  CAS  Google Scholar 

  33. Sombrio G, Pomar CAD, Oliveira LS, Freitas ALM, Souza FL, Souza JA (2019) Novel design of photocatalyst coaxial ferromagnetic core and semiconducting shell microwire architecture. J Catal 370:61–69. https://doi.org/10.1016/j.jcat.2018.12.010

    Article  CAS  Google Scholar 

  34. Pelaez M, Nolan NT, Pillai SC (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 125:331–349. https://doi.org/10.1016/j.apcatb.2012.05.036

    Article  CAS  Google Scholar 

  35. Hirakawa T, Kominami H, Ohtani B, Nosaka Y (2001) Mechanism of photocatalytic production of active oxygens on highly crystalline TiO2 Particles by means of chemiluminescent probing and ESR spectroscopy. J Phys Chem B 105:6993–6999. https://doi.org/10.1021/jp0112929

    Article  CAS  Google Scholar 

  36. Wang HL, Zhang LS, Chen ZG, Hu JQ, Li SJ, Wang ZH, Liu JS, Wang XC (2014) Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev 43:5234–5244. https://doi.org/10.1039/c4cs00126e

    Article  CAS  Google Scholar 

  37. Callister WD, Rethwisch DG (2020) Materials science and engineering—an introduction, 10th edn. Wiley, Asia, p 713

    Google Scholar 

  38. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114(19):9919–9986. https://doi.org/10.1021/cr5001892

    Article  CAS  Google Scholar 

  39. Zuo F, Wang L, Wu T, Zhang Z, Borchardt D, Feng P (2010) Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J Am Chem Soc 132:11856–11857. https://doi.org/10.1021/ja103843d

    Article  CAS  Google Scholar 

  40. Zhang X, Zhang L (2010) Electronic and band structure tuning of ternary semiconductor photocatalysts by self doping: the case of BiOI. J Phys Chem C 114:18198–18206. https://doi.org/10.1021/jp105118m

    Article  CAS  Google Scholar 

  41. Luo H, Dimitrov S, Daboczi M, Kim JS, Guo Q, Fang Y (2020) Nitrogen-doped carbon dots/TiO2 nanoparticle composites for photoelectrochemical water oxidation. ACS Appl Nano Mater 3:3371–3381. https://doi.org/10.1021/acsanm.9b02412

    Article  CAS  Google Scholar 

  42. Zhang X, Wang Y, Liu B, Sang Y, Liu H (2017) Heterostructures construction on TiO2 nanobelts: a powerful tool for building high-performance photocatalysts. Appl Catal B 202:620–641. https://doi.org/10.1016/j.apcatb.2016.09.068

    Article  CAS  Google Scholar 

  43. Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, Wang X (2014) Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev 43(15):5234–5244. https://doi.org/10.1039/c4cs00126e

    Article  CAS  Google Scholar 

  44. Yuan YP, Ruan LW, Barber J, Joachim Loo SC, Xue C (2014) Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion. Energy Environ Sci 7(12):3934–3951. https://doi.org/10.1039/c4ee02914c

    Article  CAS  Google Scholar 

  45. Miao Z, Wang G, Li L, Wang C, Zhang X (2019) Fabrication of black TiO2/TiO2 homojunction for enhanced photocatalytic degradation. J Mater Sci. https://doi.org/10.1007/s10853-019-03900-2

    Article  Google Scholar 

  46. Moniz SJA, Shevlin SA, Martin DJ, Guo ZX, Tang J (2015) Visible-light driven heterojunction photocatalysts for water splitting: a critical review. Energy Environ Sci 8(3):731–759. https://doi.org/10.1039/c4ee03271c

    Article  CAS  Google Scholar 

  47. Eaimsumang S, Prataksanon P, Pongstabodee S, Luengnaruemitchai A (2019) Effect of acid on the crystalline phase of TiO2 prepared by hydrothermal treatment and its application in the oxidative steam reforming of methanol. Res Chem Intermed 46:1235–1254. https://doi.org/10.1007/s11164-019-04031-8

    Article  CAS  Google Scholar 

  48. Li Y, Wang S, Lei D, He YB, Li B, Kang F (2017) Acetic acid-induced preparation of anatase TiO2 mesocrystals at low temperature for enhanced Li-ion storage. J Mater Chem A 5(24):12236–12242. https://doi.org/10.1039/c7ta02361h

    Article  CAS  Google Scholar 

  49. Carvalho F, Liandra-Salvador E, Bettanin F, Souza JS, Homem-de-Mello P, Polo AS (2014) Synthesis, characterization and photoelectrochemical performance of a tris-heteroleptic ruthenium(II) complex having 4,7-dimethyl-1,10-phenanthroline. Inorg Chim Acta 414:145–152. https://doi.org/10.1016/j.ica.2014.02.002

    Article  CAS  Google Scholar 

  50. Schneider JT, Firak DS, Ribeiro RR, Peralta-Zamora PG (2020) Use of scavenger agents in heterogeneous photocatalysis: truths, half-truths, and misinterpretations. Phys Chem Chem Phys 22:15723–15733. https://doi.org/10.1039/d0cp02411b

    Article  CAS  Google Scholar 

  51. Wardman P (1989) Reduction potentials of one-electron couples involving free radicals in aqueous solution. J Phys Chem 18:1637–1755. https://doi.org/10.1063/1.555843

    Article  CAS  Google Scholar 

  52. Kawai T, Sakata T (1980) Photocatalytic hydrogen production from liquid methanol and water. J Chem Soc, Chem Commun 15:694–695. https://doi.org/10.1039/c39800000694

    Article  Google Scholar 

  53. Jiang H, Liu Y, Zang S, Li J, Wang H (2015) Microwave-assisted hydrothermal synthesis of Nd, N, and P tri-doped TiO2 from TiCl4 hydrolysis and synergetic mechanism for enhanced photoactivity under simulated sunlight irradiation. Mater Sci Semicond Process 40:822–831. https://doi.org/10.1016/j.mssp.2015.07.069

    Article  CAS  Google Scholar 

  54. Howard CJ, Sabine TM, Dickson F (1991) Structural and thermal parameters for rutile and anatase. Acta Crystallogr B Struct Sci 47(4):462–468. https://doi.org/10.1107/s010876819100335x

    Article  Google Scholar 

  55. Wu S, Luo X, Long Y, Xu B (2019) Exploring the phase transformation mechanism of titanium dioxide by high temperature in situ method. IOP Conf Ser: Mater Scie Eng 493:012010. https://doi.org/10.1088/1757-899x/493/1/012010

    Article  CAS  Google Scholar 

  56. Stoumpos CC, Malliakas CD, Kanatzidis MG (2013) Semiconducting Tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem 52(15):9019–9038. https://doi.org/10.1021/ic401215x

    Article  CAS  Google Scholar 

  57. Li X, Yu JG, Low JX, Fang YP, Xiao J, Chen XB (2015) Engineering heterogeneous semiconductors for solar water splitting. J Mater Chem A 3:2485–2534. https://doi.org/10.1039/c4ta04461d

    Article  CAS  Google Scholar 

  58. Park H, Park Y, Kim W, Choi W (2013) Surface modification of TiO2 photocatalyst for environmental applications. J Photochem Photobiol, C 15:1–20. https://doi.org/10.1016/j.jphotochemrev.2012.10.001

    Article  CAS  Google Scholar 

  59. Zhang J, Zhou P, Liu J, Yu J (2014) New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys Chem Chem Phys 16(38):20382–20386. https://doi.org/10.1039/c4cp02201g

    Article  CAS  Google Scholar 

  60. Chen X, Liu L, Peter YY (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331:746–750. https://doi.org/10.1126/science.1200448

    Article  CAS  Google Scholar 

  61. Sadoughi G, Starr DE, Handick E, Stranks SD, Gorgoi M, Wilks RG, Snaith HJ (2015) Observation and mediation of the presence of metallic lead in organic-inorganic perovskite films. ACS Appl Mater Interfaces 7(24):13440–13444. https://doi.org/10.1021/acsami.5b02237

    Article  CAS  Google Scholar 

  62. Tardivo JP, Del Giglio A, Oliveira CS, Gabrielli DS, Junqueira HC, Tada DB, Baptista MS (2005) Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications. Photodiagn Photodyn Ther 2(3):175–191. https://doi.org/10.1016/s1572-1000(05)00097-9

    Article  CAS  Google Scholar 

  63. Chiu YH, Chang TFM, Chen CY, Sone M, Hsu YJ (2019) Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts. Catalysts 9(5):430. https://doi.org/10.3390/catal9050430

    Article  CAS  Google Scholar 

  64. Mohsen-Nia M, Amiri H, Jazi B (2010) Dielectric constants of water, methanol, ethanol, butanol and acetone: measurement and computational study. J Solut Chem 39(5):701–708. https://doi.org/10.1007/s10953-010-9538-5

    Article  CAS  Google Scholar 

  65. Guo L, Okinaka N, Zhang L, Watanabe S (2021) Facile synthesis of ZnFe2O4/SnO2 composites for efficient photocatalytic degradation of methylene blue. Mater Chem Phys 262:124273. https://doi.org/10.1016/j.matchemphys.2021.124273

    Article  CAS  Google Scholar 

  66. Ganharul GKQ, Tofanello A, Bonadio A, Freitas ALM, Escote MT, Polo AS, Souza JA (2021) Disclosing the hidden presence of Ti3+ ions in different TiO2 crystal structures synthesized at low temperature and photocatalytic evaluation by methylene blue photobleaching. J Mater Res 36:3353–3365. https://doi.org/10.1557/s43578-021-00342-y

    Article  CAS  Google Scholar 

  67. Pomar CD, Souza AT, Sombrio G, Souza FL, Bonvent JJ, Souza JA (2018) Synthesis of SnS and ZnS hollow microarchitectures decorated with nanostructures and their photocatalytic behavior for dye degradation. ChemistrySelect 3(13):3774–37803. https://doi.org/10.1002/slct.201800383

    Article  CAS  Google Scholar 

  68. Nosaka Y, Nosaka A (2016) Understanding hydroxyl radical (•OH) generation processes in photocatalysis. ACS Energy Lett 1(2):356–359. https://doi.org/10.1021/acsenergylett.6b00174

    Article  CAS  Google Scholar 

  69. Zhang J, He J, Yang L, Gan Z (2020) Photoluminescent spectral broadening of lead halide perovskite nanocrystals investigated by emission wavelength dependent lifetime. Molecules 25(5):1151. https://doi.org/10.3390/molecules25051151

    Article  CAS  Google Scholar 

  70. Zhang Q, Tai M, Zhou Y, Zhou Y, Wei Y, Tan C, Lin H (2019) Enhanced photocatalytic property of γ-CsPbI3 perovskite nanocrystals with WS2. ACS Sustain Chem Eng 8(2):1219–1229. https://doi.org/10.1021/acssuschemeng.9b06451

    Article  CAS  Google Scholar 

  71. Ren Y, Chen J, Ji D, Sun Y, Li C (2019) Improve the quality of HC(NH2)2PbIxBr3–x through iodine vacancy filling for stable mixed perovskite solar cells. Chem Eng J. https://doi.org/10.1016/j.cej.2019.123273

    Article  Google Scholar 

  72. Boyd CC, Cheacharoen R, Leijtens T, McGehee MD (2018) Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem Rev 119:3418–3451. https://doi.org/10.1021/acs.chemrev.8b00336

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research described herein was conducted during a PhD scholarship financed by UFABC. This work is supported by the Brazilian agency CNPq under Grants Nos. 307950/2017-4 and 404951/2016-3 and by the FAPESP under Grants Nos. 2017/02317-2, 2020/09563-1, 2018/15682-3, and 2019/23277-4. The authors are grateful to the Multiuser Central Facilities of UFABC for the experimental support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Antonio Souza.

Ethics declarations

Conflict of interest

The authors declare that no conflicts of interest or competing interests exist.

Human and animal rights

The authors declare that no experiments involving human tissue were carried out.

Additional information

Handling Editor: Joshua Tong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2001 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganharul, G.K.Q., Tofanello, A., Bonadio, A. et al. Outstanding cooperation of all-inorganic CsPbI3 perovskite with TiO2 forming composites and heterostructures for photodegradation. J Mater Sci 57, 17363–17379 (2022). https://doi.org/10.1007/s10853-022-07737-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07737-0

Navigation