Skip to main content
Log in

Effect of acid on the crystalline phase of TiO2 prepared by hydrothermal treatment and its application in the oxidative steam reforming of methanol

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Titania (TiO2) supports with anatase (A), mixed, and rutile (R) crystalline phases were prepared via the hydrothermal treatment of titanium isopropoxide and investigated as a catalyst for the oxidative steam reforming of methanol (OSRM). The different TiO2 phases were synthesized using different types of acid: acetic (HAc), nitric, and a mixture of HAc and hydrochloric acids, and hydrothermal (90 or 200 °C) or calcination (560 or 750 °C) temperatures. X-ray diffraction analysis revealed the crystal structure of successfully synthesized TiO2 with different TiO2-A:TiO2-R ratios. The TiO2-R with (110) and (101) planes showed the highest catalytic activity for OSRM in the temperature range of 200–400 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X.Z. Ding, X.H. Liu, Y.Z. He, J. Mater. Sci. Lett. 15, 1789 (1996)

    CAS  Google Scholar 

  2. S.J. Smith, R. Stevens, S. Liu, G. Li, A. Navrotsky, J. Boerio-Goates, B.F. Woodfield, Am. Miner. 94, 236 (2009)

    CAS  Google Scholar 

  3. M.B. Fisher, D.A. Keane, P. Fernández-Ibáñez, J. Colreavy, S.J. Hinder, K.G. McGuigan, S.C. Pillai, Appl. Catal. B. 130-131, 8 (2013)

    CAS  Google Scholar 

  4. M.Y. Kang, H.J. Yun, S. Yu, W. Kim, N.D. Kim, J. Yi, J. Mol. Catal. A Chem. 368–369, 72 (2013)

    Google Scholar 

  5. L. Di, D. Duan, X. Zhang, B. Qi, Z. Zhan, IEEE Trans. Plasma Sci. 44, 2692 (2016)

    CAS  Google Scholar 

  6. J. Li, G. Lu, G. Wu, D. Mao, Y. Guo, Y. Wang, Y. Guo, Catal. Sci. Technol. 4, 1268 (2014)

    CAS  Google Scholar 

  7. R. Su, R. Bechstein, L. Sø, R.T. Vang, M. Sillassen, B. Esbjörnsson, A. Palmqvist, F. Besenbacher, J. Phys. Chem. C 115, 24287 (2011)

    CAS  Google Scholar 

  8. M. Alzamani, A. Shokuhfar, E. Eghdam, S. Mastali, Prog. Natl. Sci. Mater. 23, 77 (2013)

    Google Scholar 

  9. J. Fernández-Catalá, L. Cano-Casanova, Á.M. Lillo-Ródenas, Á. Berenguer-Murcia, D. Cazorla-Amorós, Molecules 22, 2243 (2017)

    PubMed Central  Google Scholar 

  10. G.S. Herman, Z. Dohnálek, N. Ruzycki, U. Diebold, J. Phys. Chem. B 107, 2788 (2003)

    CAS  Google Scholar 

  11. A. Tilocca, A. Selloni, J. Phys. Chem. B 108, 19314 (2004)

    CAS  Google Scholar 

  12. X. Yang, H. Konishi, H. Xu, M. Wu, Eur. J. Inorg. Chem. 2006, 2229 (2006)

    Google Scholar 

  13. C.-C. Wang, J.Y. Ying, Chem. Mater. 11, 3113 (1999)

    CAS  Google Scholar 

  14. M. Andersson, L. Österlund, S. Ljungström, A. Palmqvist, J. Phys. Chem. B 106, 10674 (2002)

    CAS  Google Scholar 

  15. S.M. Gupta, M. Tripathi, Cent. Eur. J. Chem. 10, 279 (2012)

    CAS  Google Scholar 

  16. Y. Li, Y. Yang, M. Guo, M. Zhang, RSC Adv. 5, 13478 (2015)

    CAS  Google Scholar 

  17. S. Eaimsumang, S. Wongkasemjit, S. Pongstabodee, S.M. Smith, S. Ratanawilai, N. Chollacoop, A. Luengnaruemitchai, J. Rare Earths 37, 819 (2019)

    CAS  Google Scholar 

  18. A. Zaban, S.T. Aruna, S. Tirosh, B.A. Gregg, Y. Mastai, J. Phys. Chem. B 104, 4130 (2000)

    CAS  Google Scholar 

  19. S. Doeuff, M. Henry, C. Sanchez, J. Livage, J. Non-Cryst. Solids 89, 206 (1987)

    CAS  Google Scholar 

  20. S.N.A. Zaine, A.A.K. Mastan, S.S. Ahmedullah, S.S. Mohamed, I.A. Ahmad, A. Ramli, J. Appl. Sci. 11, 1326 (2011)

    CAS  Google Scholar 

  21. A. Bouzoubaa, A. Markovits, M. Calatayud, C. Minot, Surf. Sci. 583, 107 (2005)

    CAS  Google Scholar 

  22. H. Hu, Y. Lin, Y.H. Hu, Phys. Lett. A 383, 2978 (2019)

    CAS  Google Scholar 

  23. Y. Zhu, D. Liu, M. Meng, Chem. Commun. 50, 6049 (2014)

    CAS  Google Scholar 

  24. N. Kruse, S. Chenakin, Appl. Catal. A Gen. 391, 367 (2011)

    CAS  Google Scholar 

  25. B. Bharti, S. Kumar, H.-N. Lee, R. Kumar, Sci. Rep. 6, 32355 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. J.-C. Dupin, D. Gonbeau, P. Vinatier, A. Levasseur, Phys. Chem. Chem. Phys. 2, 1319 (2000)

    CAS  Google Scholar 

  27. G.C. Collazzo, S.L. Jahn, N.L.V. Carreño, E.L. Foletto, Braz. J. Chem. Eng. 28, 265 (2011)

    CAS  Google Scholar 

  28. C. Byrne, R. Fagan, S. Hinder, D.E. McCormack, S.C. Pillai, RSC Adv. 6, 95232 (2016)

    CAS  Google Scholar 

  29. M. Wu, J. Long, A. Huang, Y. Luo, S. Feng, R. Xu, Langmuir 15, 8822 (1999)

    CAS  Google Scholar 

  30. D.H. Kwon, Y.H. Jung, Y.I. Kim, J. Korean Chem. Soc. 59, 238 (2015)

    CAS  Google Scholar 

  31. M. Wu, G. Lin, D. Chen, G. Wang, D. He, S. Feng, R. Xu, Chem. Mater. 14, 1974 (2002)

    CAS  Google Scholar 

  32. H. Cheng, J. Ma, Z. Zhao, L. Qi, Chem. Mater. 7, 663 (1995)

    CAS  Google Scholar 

  33. V. Chhabra, V. Pillai, B.K. Mishra, A. Morrone, D.O. Shah, Langmuir 11, 3307 (1995)

    CAS  Google Scholar 

  34. D.A.H. Hanaor, C.C. Sorrell, J. Mater. Sci. 46, 855 (2011)

    CAS  Google Scholar 

  35. N. Wetchakun, B. Incessungvorn, K. Wetchakun, S. Phanichphant, Mater. Lett. 82, 195 (2012)

    CAS  Google Scholar 

  36. B. Rajesh, N.R. Sasirekha, Y.W. Chen, Mater. Res. Bull. 43, 682 (2008)

    CAS  Google Scholar 

  37. K.Y. Ho, K.L. Yeung, Gold Bull. 40, 15 (2007)

    CAS  Google Scholar 

  38. T.-C. Ou, F.-W. Chang, L.S. Roselin, J. Mol. Catal. A Chem. 293, 8 (2008)

    CAS  Google Scholar 

  39. R. Zhang, C. Huang, L. Zong, K. Lu, X. Wang, J. Cai, Appl. Sci. 8, 2243 (2018)

    Google Scholar 

  40. M.A. Díaz-Pérez, J. Moya, J.C. Serrano-Ruiz, J. Faria, Ind. Eng. Chem. Res. 57, 15268 (2018)

    PubMed  PubMed Central  Google Scholar 

  41. M. Turco, G. Bagnasco, C. Cammarano, P. Senese, U. Costantino, M. Sisani, Appl. Catal. B 77, 46 (2007)

    CAS  Google Scholar 

  42. N. Yi, R. Si, H. Saltsburg, M. Flytzani-Stephanopoulos, Appl. Catal. B 95, 87 (2010)

    CAS  Google Scholar 

  43. H. Liu, H.T. Ma, X.Z. Li, W.Z. Li, M. Wu, X.H. Bao, Chemosphere 50, 39 (2003)

    CAS  PubMed  Google Scholar 

  44. M. Shen, M.A. Henderson, J. Phys. Chem. Lett. 2, 2707 (2011)

    CAS  Google Scholar 

  45. M. Shen, M.A. Henderson, J. Phys. Chem. C 116, 18788 (2012)

    CAS  Google Scholar 

  46. K. Kočí, L. Obalová, L. Matějová, D. Plachá, Z. Lacný, J. Jirkovský, O. Šolcová, Appl. Catal. B 89, 494 (2009)

    Google Scholar 

  47. Z. Ding, G.Q. Lu, P.F. Greenfield, J. Phys. Chem. B 104, 4815 (2000)

    CAS  Google Scholar 

  48. X. Wang, L. Sø, R. Su, S. Wendt, P. Hald, A. Mamakhel, C. Yang, Y. Huang, B.B. Iversen, F. Besenbacher, J. Catal. 310, 100 (2014)

    CAS  Google Scholar 

  49. H. Bahruji, M. Bowker, P.R. Davies, J. Chem. Sci. 131, 33 (2019)

    Google Scholar 

  50. H. Yoshida, N. Igarashi, S.-I. Fujita, J. Panpranot, M. Arai, Catal. Lett. 145, 606 (2015)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the contributions and financial support from Chulalongkorn University (CU-GES-60-04-63-03), Ratchadaphiseksomphot Endowment Fund. The Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand, is acknowledged for technical support of HR-TEM. The authors thank the Thailand Research Fund (TRF) and National Science and Technology Development Agency (PHD/0237/2558) for the PhD scholarship funding of Ms. Srisin Eaimsumang. We also thank Mr. Thanaphat Atjayutpokin for the NH3-TPD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apanee Luengnaruemitchai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eaimsumang, S., Prataksanon, P., Pongstabodee, S. et al. Effect of acid on the crystalline phase of TiO2 prepared by hydrothermal treatment and its application in the oxidative steam reforming of methanol. Res Chem Intermed 46, 1235–1254 (2020). https://doi.org/10.1007/s11164-019-04031-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-04031-8

Keywords

Navigation