Skip to main content

Advertisement

Log in

One-step rapid synthesis of NiMoO4·xH2O nanowires by dielectric barrier discharge micro-plasma method for high-efficiency non-enzymatic glucose sensing

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The non-enzymatic electrochemical sensor has the advantages of fast response and high sensitivity. In this study, the NiMoO4·xH2O nanowires were quickly grown in situ on the carbon cloth substrate (NiMoO4·xH2O NW/CC) in one step by using the dielectric barrier discharge (DBD) micro-plasma method. With the benefits of the open network of 3D binary metal oxide NiMoO4 nanowire self-supporting electrode, large specific surface area, many active sites and the synergistic effect of Ni and Mo, NiMoO4·xH2O NW/CC show excellent electrocatalytic sensing performance for glucose with a high sensitivity of 4510 μA mM−1 cm−2, and a low detection limit of 63 nM (S/N = 3). There is also good selectivity, stability and practical application prospects. It has been shown that the modified DBD micro-plasma method has the advantages of being low in cost, simple and fast, green and environmentally friendly, and therefore it has good application prospects in the preparation of electrochemical sensing materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Mei H, Wu W, Yu B, Li Y, Wu H, Wang S, Xia Q (2015) Non-enzymatic sensing of glucose at neutral pH values using a glassy carbon electrode modified with carbon supported Co@Pt core-shell nanoparticles. Microchim Acta 182:1869–1875

    Article  CAS  Google Scholar 

  2. Wang G, He X, Wang L, Gu A, Huang Y, Fang B, Geng B, Zhang X (2013) Non-enzymatic electrochemical sensing of glucose. Microchim Acta 180:161–186

    Article  CAS  Google Scholar 

  3. Ohta KT, Isselbacher RD (1990) Regulation of glucose transporters in LLC-PK1 cells: effects of D-glucose and monosaccharides. Mol Cell Biol 10:6491–6499

    CAS  Google Scholar 

  4. Wang Z, Cao X, Liu D, Hao S, Kong R, Du G, Asiri AM, Sun X (2017) Copper-nitride nanowires array: an efficient dual-functional catalyst electrode for sensitive and selective non-enzymatic glucose and hydrogen peroxide sensing. Chem-Eur J 23:4986–4989

    Article  CAS  Google Scholar 

  5. Steiner MS, Duerkop A, Wolfbeis OS (2011) Optical methods for sensing glucose. Chem Soc Rev 40:4805–4839

    Article  CAS  Google Scholar 

  6. Malchoff CD, Landau JI, Shoukri K, Buchert J (2002) A novel noninvasive blood glucose monitor. Diabetes Care 25:2268–2275

    Article  CAS  Google Scholar 

  7. Luo J, Luo P, Xie M, Du K, Zhao B, Pan F, Fan P, Zeng F, Zhang D, Zheng Z, Liang G (2013) A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure. Biosens Bioelectron 49:512–518

    Article  CAS  Google Scholar 

  8. Gourzi M, Rouane A, Guelaz R, Alavi MS, McHugh MB, Nadi M, Roth P (2005) Noninvasive glycaemia blood measurements by electromagnetic sensor: study in static and dynamic blood circulation. J Med Eng Technol 29:22–26

    Article  CAS  Google Scholar 

  9. Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108:814–825

    Article  CAS  Google Scholar 

  10. Liu T, Li M, Dong P, Zhang Y, Guo L (2018) Design and facile synthesis of mesoporous cobalt nitride nanosheets modified by pyrolytic carbon for the nonenzymatic glucose detection. Sensor Actuat B-Chem 255:1983–1994

    Article  CAS  Google Scholar 

  11. Li M, Bo X, Zhang Y, Han C, Guo L (2014) One-pot ionic liquid-assisted synthesis of highly dispersed PtPd nanoparticles/reduced graphene oxide composites for nonenzymatic glucose detection. Biosens Bioelectron 56:223–230

    Article  CAS  Google Scholar 

  12. Pang H, Lu Q, Wang J, Li Y, Gao F (2010) Glucose-assisted synthesis of copper micropuzzles and their application as nonenzymatic glucose sensors. Chem Commun 46:2010–2012

    Article  CAS  Google Scholar 

  13. Zhai Y, Li J, Chu X, Xu M, Jin F, Li X, Fang X, Wei Z, Wang X (2016) MoS2 microflowers based electrochemical sensing platform for non-enzymatic glucose detection. J Alloy Compd 672:600–608

    Article  CAS  Google Scholar 

  14. Wang Y, Zhu Y, Xing Z, Qian Y (2013) Hydrothermal synthesis of α-MoO3 and the influence of later heat treatment on its electrochemical properties. Int J Electrochem Sci 8:9851–9857

    CAS  Google Scholar 

  15. Sharma M, Gangan A, Chakraborty B, Rout CS (2017) Non-enzymatic glucose sensing properties of MoO3 nanorods: experimental & density functional theory investigations. Appl Phys 50(47):475401. https://doi.org/10.1088/1361-6463/aa8e7f

    Google Scholar 

  16. Sun T, Zhao X, Li B, Shu H, Luo L, Xia W, Chen M, Zeng P, Yang X, Gao P, Pei Y, Wang X (2021) NiMoO4 nanosheets anchored on N–S doped carbon clothes with hierarchical structure as a bidirectional catalyst toward accelerating polysulfides conversion for Li–S battery. Adv Funct Mater 31:2101285. https://doi.org/10.1002/adfm.202101285

    Article  CAS  Google Scholar 

  17. Qu G, Li T, Jia S, Zheng H, Li L, Cao F, Wang H, Ma W, Tang Y, Wang J (2017) Rapid and scalable synthesis of Mo-based binary and ternary oxides for electrochemical applications. Adv Funct Mater 27:1700928. https://doi.org/10.1002/adfm.201700928

    Article  CAS  Google Scholar 

  18. Zhang X, Cui S, Wang N, Hou H, Chen W, Mi L (2017) Synergistic effect initiating Ni1−xCoxMoO4·xH2O as electrodes for high-energy-density asymmetric supercapacitors. Electrochim Acta 228:274–281

    Article  CAS  Google Scholar 

  19. Ghiasi T, Ahmadi S, Ahmadi E, Olyai MRTB, Khodadadi Z (2021) Novel electrochemical sensor based on modified glassy carbon electrode with graphene quantum dots, chitosan and nickel molybdate nanocomposites for diazinon and optimal design by the Taguchi method. Microchem J 160:105628. https://doi.org/10.1016/j.microc.2020.105628

    Article  CAS  Google Scholar 

  20. Xu W, Zhang B, Wang X, Wang G, Ding D (2018) The flame retardancy and smoke suppression effect of a hybrid containing CuMoO4 modified reduced graphene oxide/layered double hydroxide on epoxy resin. J Hazard Mater 343:364–375

    Article  CAS  Google Scholar 

  21. Zhang L, Mi T, Ziaee MA, Liang L, Wang R (2018) Hollow POM@MOF hybrid-derived porous Co3O4/CoMoO4 nanocages for enhanced electrocatalytic water oxidation. J Mater Chem A 6:1639–1647

    Article  CAS  Google Scholar 

  22. Peng S, Li L, Wu H, Madhavi S, Luo X (2015) Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors. Adv Energy Mater 5:1401172. https://doi.org/10.1002/aenm.201401172

    Article  CAS  Google Scholar 

  23. Huang M, He D, Wang M, Jiang P (2018) NiMoO4 nanosheet arrays anchored on carbon cloth as 3D open electrode for enzyme-free glucose sensing with improved electrocatalytic activity. Anal Bioanal Chem 410:7921–7929

    Article  CAS  Google Scholar 

  24. Qing C, Liu Y, Sun X, Yang X, Wang H, Sun D, Wang B, Zhou Q, Xu L, Tang Y (2016) Controlled growth of NiMoO4·H2O nanoflake and nanowire arrays on Ni foam for superior performance of asymmetric super capacitor. RSC Adv 6:67785–67793

    Article  CAS  Google Scholar 

  25. Rani SD, Ramachandran R, Sheet S, Aziz MA, Lee YS, AlSehemi AG, Pannipara M, Xia Y, Tsai SY, Ng FL, Phang SM, Kumar GG (2020) NiMoO4 nanoparticles decorated carbon nanofiber membranes for the flexible and high performance glucose sensors. Sensor Actuat B-Chem 312:127886. https://doi.org/10.1016/j.snb.2020.127886

    Article  CAS  Google Scholar 

  26. Govindasamy M, Shanthi S, Elaiyappillai E, Wang SF, Johnson PM, Ikeda H, Hayakawa Y, Ponnusamy S, Muthamizhchelvan C (2019) Fabrication of hierarchical NiCo2S4@CoS2 nanostructures on highly conductive flexible carbon cloth substrate as a hybrid electrode material for supercapacitors with enhanced electrochemical performance. Electrochim Acta 293:328–337

    Article  CAS  Google Scholar 

  27. Ray SK, Dhakal D, Lee SW (2018) Rapid degradation of naproxen by AgBr-α-NiMoO4, composite photocatalyst in visible light: mechanism and pathways. Chem Eng J 347:836–848

    Article  CAS  Google Scholar 

  28. Park JS, Cho JS, Kang YC (2018) Scalable synthesis of NiMoO4 microspheres with numerous empty nanovoids as an advanced anode material for Li-ion batteries. J Power Sour 379:278–287

    Article  CAS  Google Scholar 

  29. Dong T, Li M, Wang P, Yang P (2018) Synthesis of hierarchical tube-like yolk-shell Co3O4@NiMoO4 for enhanced supercapacitor performance. Int J Hydrogen Energ 43:14569–14577

    Article  CAS  Google Scholar 

  30. Xu K, Tang Q, Zhao W, Yu X, Yang Y, Yu T, Yuan C (2019) In situ growth of Co3O4@NiMoO4 composite arrays on alumina substrate with improved triethylamine sensing performance. Sens Actuat B Chem 302:127154

    Article  CAS  Google Scholar 

  31. Du X, Fu J, Zhang X (2018) NiCo2O4@NiMoO4 supported on nickel foam for electrocatalytic water splitting. Chem Cat Chem 10:5533–5540

    CAS  Google Scholar 

  32. Liu C, Cheng HM (2016) Controlled growth of semiconducting and metallic single-wall carbon nanotubes. J Am Chem Soc 138:6690–6698

    Article  CAS  Google Scholar 

  33. Lorkit P, Panapoy M, Ksapabutr B (2014) Iron oxide-based supercapacitor from ferratrane precursor via sol-gel-hydrothermal process. Energy Proc 56:466–473

    Article  CAS  Google Scholar 

  34. Zhang P, Zhou J, Chen W, Zhao Y, Mu X, Zhang Z, Pan X, Xie E (2017) Constructing highly-efficient electron transport channels in the 3D electrode materials for high-rate supercapacitors: the case of NiCo2O4@NiMoO4 hierarchical nanostructures. Chem Eng J 307:687–695

    Article  CAS  Google Scholar 

  35. Yin C, Yang C, Jiang M, Deng C, Yang L, Li J, Qian D (2016) A novel and facile one-pot solvothermal synthesis of PEDOT-PSS/Ni-Mn-Co-O hybrid as an advanced supercapacitor electrode material. ACS Appl Mater Interf 8:2741–2752

    Article  CAS  Google Scholar 

  36. Wang Y, Chai H, Dong H, Xu J, Jia D, Zhou W (2016) Superior cycle stability performance of quasi-cuboidal CoV2O6 microstructures as electrode material for supercapacitors. ACS Appl Mater Interf 8:27291–27297

    Article  CAS  Google Scholar 

  37. Mariottil D, Sankaran RM (2010) Microplasmas for nanomaterials synthesis. J Phys D Appl Phys 43:323001. https://doi.org/10.1088/0022-3727/43/32/323001

    Article  CAS  Google Scholar 

  38. Becke KH, Kersten H, Hopwood J, Lopez JL (2010) Microplasmas: scientific challenges & technological opportunities. Eur Phys J D 60:437–439

    Article  CAS  Google Scholar 

  39. Wang Z, Xu C, Lu Y, Wei G, Ye G, Sun T, Chen J (2018) Microplasma electrochemistry controlled rapid preparation of fluorescent polydopamine nanoparticles and their application in uranium detection. Chem Eng J 344:480–486

    Article  CAS  Google Scholar 

  40. Du C, Xiao M (2014) Cu2O nanoparticles synthesis by microplasma. Sci Rep 4:1–5

    Google Scholar 

  41. Chiang WH, Sankaran RM (2007) Microplasma synthesis of metal nanoparticles for gas-phase studies of catalyzed carbon nanotube growth. Appl Phys Lett 91:121503. https://doi.org/10.1063/1.2786835

    Article  CAS  Google Scholar 

  42. Wang Z, Lu Y, Yuan H, Ren Z, Xu C, Chen J (2015) Microplasma-assisted rapid synthesis of luminescent nitrogen-doped carbon dots and their application in pH sensing and uranium detection. Nanoscale 7:20743–20748

    Article  CAS  Google Scholar 

  43. Wang R, Zuo S, Zhu W, Zhang J, Fang J (2014) Rapid synthesis of aqueous-phase magnetite nanoparticles by atmospheric pressure non-thermal microplasma and their application in magnetic resonance imaging. Plasma Process Polym 11:448–454

    Article  CAS  Google Scholar 

  44. Lu X, Jia W, Chai H, Hu J, Wang S, Cao Y (2019) Solid-state chemical fabrication of one-dimensional mesoporous β-nickel molybdate nanorods as remarkable electrode material for supercapacitors. J Colloid Interf Sci 534:322–331

    Article  CAS  Google Scholar 

  45. Yan J, Fan Z, Sun W, Ning G, Wei T, Zhang Q, Zhang R, Zhi L, Wei F (2012) Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv Funct Mater 22:2632–2641

    Article  CAS  Google Scholar 

  46. Huang L, Xiang J, Zhang W, Chen C, Xu H, Huang Y (2015) 3D interconnected porous NiMoO4 nanoplate arrays on Ni foam as high-performance binder-free electrode for supercapacitors. J Mater Chem A 3:22081–22087

    Article  CAS  Google Scholar 

  47. Wang B, Li S, Wu X, Tian W, Liu J, Yu M (2015) Integration of network-like porous NiMoO4 nanoarchitectures assembled with ultrathin mesoporous nanosheets on three-dimensional graphene foam for highly reversible lithium storage. J Mater Chem A 3:13691–13698

    Article  CAS  Google Scholar 

  48. Qing C, Yang C, Chen M, Li W, Wang S, Tang Y (2018) Design of oxygen-deficient NiMoO4 nanoflake and nanorod arrays with enhanced supercapacitive performance. Chem Eng J 354:182–190

    Article  CAS  Google Scholar 

  49. Ghosh D, Giri S, Das CK (2013) Synthesis, characterization and electrochemical performance of graphene decorated with 1D NiMoO4·nH2O nanorods. Nanoscale 5:10428–10437

    Article  CAS  Google Scholar 

  50. Gu Z, Zhang X (2016) NiCo2O4@MnMoO4 core–shell flowers for high performance supercapacitors. J Mater Chem A 4:8249–8254

    Article  CAS  Google Scholar 

  51. Xia X, Lei W, Hao Q, Wang W, Wang X (2013) One-step synthesis of CoMoO4/graphene composites with enhanced electrochemical properties for supercapacitors. Electrochim Acta 99:253–261

    Article  CAS  Google Scholar 

  52. Kumar V, Matz S, Hoogestraat D, Bhavanasi V, Parida K, Shamery KA, Lee PS (2016) Design of mixed-metal silver decamolybdate nanostructures for high specific energies at high power density. Adv Mater 28:6966–6975

    Article  CAS  Google Scholar 

  53. Haetge J, Djerdj I, Brezesinski T (2012) Nanocrystalline NiMoO4 with an ordered mesoporous morphology as potential material for rechargeable thin film lithium batteries. Chem Commun 48:6726–6728

    Article  CAS  Google Scholar 

  54. Naik KK, Ratha S, Rout CS (2016) Phase and shape dependent non–enzymatic glucose sensing properties of nickel molybdate. Chem Sel 1:5187–5195

    CAS  Google Scholar 

  55. Kannan P, Chen F, Jiang H, Wang H, Wang R, Subramanian P, Ji S (2019) Hierarchical core-shell structured Ni3S2/NiMoO4 nanowires: a high-performance and reusable electrochemical sensor for glucose detection. Analyst 144:4925–4934

    Article  CAS  Google Scholar 

  56. Liao S, Lu S, Bao S, Yu Y, Wang M (2016) NiMoO4 nanofibres designed by electrospining technique for glucose electrocatalytic oxidation. Anal Chim Acta 905:72–78

    Article  CAS  Google Scholar 

  57. Li Y, Xie M, Zhang X, Liu Q, Lin D, Xu C, Xie F, Sun X (2019) Co-MOF nanosheet array: a high-performance electrochemical sensor for non-enzymatic glucose detection. Sensor Actuat B-Chem 278:126–132

    Article  CAS  Google Scholar 

  58. You C, Dai R, Cao X, Ji Y, Qu F, Liu Z, Du G, Asiri AM, Xiong X, Sun X (2017) Fe2Ni2N nanosheet array: an efficient non-noble-metal electrocatalyst for nonenzymatic glucose sensing. Nanotechnology 28:365503. https://doi.org/10.1088/1361-6528/aa7c6e

    Article  CAS  Google Scholar 

  59. Wang Z, Cao X, Liu D, Hao S, Du G, Asiri AM, Sun X (2016) Ternary NiCoP nanosheet array on a Ti mesh: a high-performance electrochemical sensor for glucose detection. Chem Commun 52:14438–14441

    Article  CAS  Google Scholar 

  60. Bai Y, Xu T, Luong JHT, Cui H (2014) Direct electron transfer of glucose oxidase-boron doped diamond interface: a new solution for a classical problem. Anal Chem 86:4910–4918

    Article  CAS  Google Scholar 

  61. Gil-Llambias FJ, Rodriguez H, Bouyssieres I, Escudey M, Carkovic I (1986) Hydrodesulfurization catalysts: electrophoretic study of Mo(or W)-Co, Mo(or W)-Ni, and Mo(or W)-Ca sulfided phases. J Catal 102:37–42

    Article  CAS  Google Scholar 

  62. Salamon J, Sathishkumar Y, Ramachandran K, Lee YS, Yoo DJ, Kim AR, Kumar GG (2015) One-pot synthesis of magnetite nanorods/graphene composites and its catalytic activity toward electrochemical detection of dopamine. Biosens Bioelectron 64:269–276

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China (No. 22106113 and 22104103), the Key Project of Sichuan Science and Technology Department of Education (No. 22ZDYF2898), the Open Foundation of MOE Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources, Ministry of Education (No. TDSYS202106), Sichuan Engineering Laboratory of Livestock Manure Treatment and Recycling (202106) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhirong Zou or Xiaoli Xiong.

Ethics declarations

Conflict of interest

We declared that we have no conflicts of interest to this work and we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Handling Editor: Joshua Tong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7556 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Tang, X., Zhao, S. et al. One-step rapid synthesis of NiMoO4·xH2O nanowires by dielectric barrier discharge micro-plasma method for high-efficiency non-enzymatic glucose sensing. J Mater Sci 57, 11673–11683 (2022). https://doi.org/10.1007/s10853-022-07318-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07318-1

Navigation