Skip to main content
Log in

NiMoO4 nanosheet arrays anchored on carbon cloth as 3D open electrode for enzyme-free glucose sensing with improved electrocatalytic activity

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

High electrical conductivity and more active sites exposure are crucial for improving the performance of electrocatalyst. Binary metal oxide nanoarray grown on conductive substrate offers a 3D self-supported electrode with a great promise in boosting its performance in enzyme-free glucose sensing. Here, NiMoO4 nanosheet arrays anchored on carbon cloth (NiMoO4 NSA/CC) was prepared via a simple hydrothermal synthesis and used as 3D self-supported electrode for enzyme-free glucose sensing. The morphology and composition of NiMoO4 nanosheet have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The electrochemical results show that NiMoO4 NSA/CC exhibits remarkable high catalytic activity towards glucose oxidation, with a wide linear response ranging from 1 μM to 0.9 mM, a high sensitivity of 4.13 mA/mM·cm2, and a low detection limit of 1 μM (S/N = 3). The enhanced performance might be attributed to the merits of nanosheet arrays with large surface area, self-supported electrode with 3D open network, as well as bimetallic component with high conductivity. Furthermore, NiMoO4 NSA/CC also shows good selectivity and reliability for glucose detection in human serum. This work offers a new pathway for the construction of enzyme-free glucose sensor with high performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lu L, Li H, Qu F, Zhang X, Shen G, Yu R. In situ synthesis of palladium nanoparticle-graphene nanohybrids and their application in nonenzymatic glucose biosensors. Biosens Bioelectron. 2011;26:3500–4.

    Article  CAS  Google Scholar 

  2. Li J, Hu H, Li H, Yao C. Recent developments in electrochemical sensors based on nanomaterials for determining glucose and its byproduct H2O2. J Mater Sci. 2017;52:10455–69.

    Article  CAS  Google Scholar 

  3. Hovancova J, Sisolakova I, Orinakova R, Orinak A. Nanomaterial-based electrochemical sensors for detection of glucose and insulin. J Solid State Electrochem. 2017;21:2147–66.

    Article  CAS  Google Scholar 

  4. Kangkamano T, Numnuam A, Limbut W, Kanatharana P, Thavarungkul P. Chitosan cryogel with embedded gold nanoparticles decorated multiwalled carbon nanotubes modified electrode for highly sensitive flow based non-enzymatic glucose sensor. Sensors Actuators B Chem. 2017;246:854–63.

    Article  CAS  Google Scholar 

  5. Nugraha AS, Li C, Bo J, Iqbal M, Alshehri SM, Ahamad T, et al. Block-copolymer-assisted electrochemical synthesis of mesoporous gold electrodes: towards a non-enzymatic glucose sensor. Chem Aust. 2017;4:2571–6.

    CAS  Google Scholar 

  6. Xu M, Song Y, Ye Y, Gong C, Shen Y, Wang L, et al. A novel flexible electrochemical glucose sensor based on gold nanoparticles/polyaniline arrays/carbon cloth electrode. Sensors Actuators B Chem. 2017;252:1187–93.

    Article  CAS  Google Scholar 

  7. Badhulika S, Paul R, Rajesh K, Terse T, Mulchandani A. Nonenzymatic glucose sensor based on platinum nanoflowers decorated multiwalled carbon nanotubes-graphene hybrid electrode. Electroanalysis. 2014;26:103–8.

    Article  CAS  Google Scholar 

  8. Li M, Bo X, Mu Z, Zhang Y, Guo L. Electrodeposition of nickel oxide and platinum nanoparticles on electrochemically reduced graphene oxide film as a nonenzymatic glucose sensor. Sensors Actuators B Chem. 2014;192:261–8.

    Article  CAS  Google Scholar 

  9. Weremfo A, Fong STC, Khan A, Hibbert DB, Zhao C. Electrochemically roughened nanoporous platinum electrodes for non-enzymatic glucose sensors. Electrochim Acta. 2017;231:20–6.

    Article  CAS  Google Scholar 

  10. Ye J, Hong B, Wu Y, Chen H, Lee C. Heterostructured palladium-platinum core-shell nanocubes for use in a nonenzymatic amperometric glucose sensor. Microchim Acta. 2016;183:3311–20.

    Article  CAS  Google Scholar 

  11. Huang B, Wang Y, Lu Z, Du H, Ye J. One pot synthesis of palladium-cobalt nanoparticles over carbon nanotubes as a sensitive non-enzymatic sensor for glucose and hydrogen peroxide detection. Sensors Actuators B Chem. 2017;252:1016–25.

    Article  CAS  Google Scholar 

  12. Koskun Y, Savk A, Sen B, Sen F. Highly sensitive glucose sensor based on monodisperse palladium nickel/activated carbon nanocomposites. Anal Chim Acta. 2018;1010:37–43.

    Article  CAS  Google Scholar 

  13. Ensafi AA, Ahmadi N, Rezaei B. Nickel nanoparticles supported on porous silicon flour, application as a non-enzymatic electrochemical glucose sensor. Sensors Actuators B Chem. 2017;239:807–15.

    Article  CAS  Google Scholar 

  14. Jothi L, Jayakumar N, Jaganathan SK, Nageswaran G. Ultrasensitive and selective non-enzymatic electrochemical glucose sensor based on hybrid material of graphene nanosheets/graphene nanoribbons/nickel nanoparticle. Mater Res Bull. 2018;98:300–7.

    Article  CAS  Google Scholar 

  15. Wang T, Yu Y, Tian H, Hu J. A novel non-enzymatic glucose sensor based on cobalt nanoparticles implantation-modified indium tin oxide electrode. Electroanalysis. 2014;26:2693–700.

    Article  CAS  Google Scholar 

  16. Ju L, Wu G, Lu B, Li X, Wu H, Liu A. Non-enzymatic amperometric glucose sensor based on copper nanowires decorated reduced graphene oxide. Electroanalysis. 2016;28:2543–51.

    Article  CAS  Google Scholar 

  17. Zheng W, Hu L, Lee LYS, Wong KY. Copper nanoparticles/polyaniline/graphene composite as a highly sensitive electrochemical glucose sensor. J Electroanal Chem. 2016;781:155–60.

    Article  CAS  Google Scholar 

  18. Dai H, Cao P, Chen D, Li Y, Wang N, Ma H, et al. Ni-Co-S/PPy core-shell nanohybrid on nickel foam as a non-enzymatic electrochemical glucose sensor. Synth Met. 2018;235:97–102.

    Article  CAS  Google Scholar 

  19. Padmanathan N, Shao H, Razeeb KM. Multifunctional nickel phosphate nano/microflakes 3D electrode for electrochemical energy storage, nonenzymatic glucose, and sweat pH sensors. ACS Appl Mater Interfaces. 2018;10:8599–610.

    Article  CAS  Google Scholar 

  20. Liu T, Li M, Guo L. Designing and facilely synthesizing a series of cobalt nitride (Co4N) nanocatalysts as non-enzymatic glucose sensors: a comparative study toward the influences of material structures on electrocatalytic activities. Talanta. 2018;181:154–64.

    Article  CAS  Google Scholar 

  21. Xie F, Cao X, Qu F, Asiri AM, Sun X. Cobalt nitride nanowire array as an efficient electrochemical sensor for glucose and H2O2 detection. Sensors Actuators B Chem. 2018;255:1254–61.

    Article  CAS  Google Scholar 

  22. Liu X, Yang W, Chen L, Jia J. Three-dimensional copper foam supported CuO nanowire arrays: an efficient non-enzymatic glucose sensor. Electrochim Acta. 2017;235:519–26.

    Article  CAS  Google Scholar 

  23. Velmurugan M, Karikalan N, Chen SM. Synthesis and characterizations of biscuit-like copper oxide for the non-enzymatic glucose sensor applications. J Colloid Interface Sci. 2017;493:349–55.

    Article  CAS  Google Scholar 

  24. Yuan C, Wu HB, Xie Y, Lou XWD. Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed. 2014;53:1488–504.

    Article  CAS  Google Scholar 

  25. Shen L, Che Q, Li H, Zhang X. Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage. Adv Funct Mater. 2014;24:2630–7.

    Article  CAS  Google Scholar 

  26. Han L, Feng K, Chen Z. Self-supported cobalt nickel nitride nanowires electrode for overall electrochemical water splitting. Energy Technol. 2017;5:1908–11.

    Article  CAS  Google Scholar 

  27. Wang Z, Cao X, Liu D, Hao S, Du G, Asiri AM, et al. Ternary NiCoP nanosheet array on a Ti mesh: a high-performance electrochemical sensor for glucose detection. Chem Commun. 2016;52:14438–41.

    Article  CAS  Google Scholar 

  28. Luo X, Huang M, Bie L, He D, Zhang Y, Jiang P. CuCo2O4 nanowire arrays supported on carbon cloth as an efficient 3D binder-free electrode for non-enzymatic glucose sensing. RSC Adv. 2017;7:23093–101.

    Article  CAS  Google Scholar 

  29. Du D, Lan R, Xu W, Beanland R, Wang H, Tao S. Preparation of a hybrid Cu2O/CuMoO4 nanosheet electrode for high-performance asymmetric supercapacitors. J Mater Chem A. 2016;4:17749–56.

    Article  CAS  Google Scholar 

  30. Xu W, Zhang B, Wang X, Wang G, Ding D. The flame retardancy and smoke suppression effect of a hybrid containing CuMoO4 modified reduced graphene oxide/layered double hydroxide on epoxy resin. J Hazard Mater. 2018;343:364–75.

    Article  CAS  Google Scholar 

  31. Fang L, Wang F, Zhai T, Qiu Y, Lan M, Huang K, et al. Hierarchical CoMoO4 nanoneedle electrodes for advanced supercapacitors and electrocatalytic oxygen evolution. Electrochim Acta. 2018;259:552–8.

    Article  CAS  Google Scholar 

  32. Zhang L, Mi T, Ziaee MA, Liang L, Wang R. Hollow POM@MOF hybrid-derived porous Co3O4/CoMoO4 nanocages for enhanced electrocatalytic water oxidation. J Mater Chem A. 2018;6:1639–47.

    Article  CAS  Google Scholar 

  33. Peng S, Li L, Wu HB, Madhavi S, Lou XW. Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors. Adv Energy Mater. 2015;5(2).

    Article  Google Scholar 

  34. Cai D, Wang D, Liu B, Wang L, Liu Y, Li H, et al. Three-dimensional Co3O4@NiMoO4 core/shell nanowire arrays on Ni foam for electrochemical energy storage. ACS Appl Mater Interfaces. 2014;6:5050–5.

    Article  CAS  Google Scholar 

  35. Cao Z, Zhang D, Xu C, Zhang R, Yuan B. A novel enzyme-free glucose sensor based on nickel molybdate nanosheets. Inter J Electrochem Sci. 2015;10:3152–9.

    CAS  Google Scholar 

  36. Naik KK, Ratha S, Rout CS. Phase and shape dependent non-enzymatic glucose sensing properties of nickel molybdate. Chemistry Select. 2016;1:5187–95.

    CAS  Google Scholar 

  37. Wang D, Cai D, Huang H, Liu B, Wang L, Liu Y, et al. Non-enzymatic electrochemical glucose sensor based on NiMoO4 nanorods. Nanotechnology. 2015;26.

    Article  Google Scholar 

  38. Liao S, Lu S, Bao S, Yu Y, Wang M. NiMoO4 nanofibres designed by electrospining technique for glucose electrocatalytic oxidation. Anal Chim Acta. 2016;905:72–8.

    Article  CAS  Google Scholar 

  39. Yan J, Fan Z, Sun W, Ning G, Wei T, Zhang Q, et al. Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv Funct Mater. 2012;22:2632–41.

    Article  CAS  Google Scholar 

  40. Ghosh D, Giri S, Das CK. Synthesis, characterization and electrochemical performance of graphene decorated with 1D NiMoO4·nH2O nanorods. Nanoscale. 2013;5:10428–37.

    Article  CAS  Google Scholar 

  41. Zhang Q, Deng Y, Hu Z, Liu Y, Yao M, Liu P. Seaurchin-like hierarchical NiCo2O4@NiMoO4 core-shell nanomaterials for high performance supercapacitors. Phys Chem Chem Phys. 2014;16:23451–60.

    Article  CAS  Google Scholar 

  42. Wang L, Xie Y, Wei C, Lu X, Li X, Song Y. Hierarchical NiO superstructures/foam Ni electrode derived from Ni metal-organic framework flakes on foam Ni for glucose sensing. Electrochim Acta. 2015;174:846–52.

    Article  CAS  Google Scholar 

  43. Yang J, Cho M, Lee Y. Synthesis of hierarchical Ni(OH)2 hollow nanorod via chemical bath deposition and its glucose sensing performance. Sensors Actuators B Chem. 2016;222:674–81.

    Article  CAS  Google Scholar 

  44. Zhan B, Liu C, Chen H, Shi H, Wang L, Chen P, et al. Free-standing electrochemical electrode based on Ni(OH)2/3D graphene foam for nonenzymatic glucose detection. Nanoscale. 2014;6:7424–9.

    Article  CAS  Google Scholar 

  45. Luo X, Huang M, He D, Wang M, Zhang Y, Jiang P. Porous NiCo2O4 nanoarrays integrating binder-free 3D open electrode offers a highly efficient sensing platform for enzyme-free glucose detection. Analyst. 2018;143:2546–54.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 21601022) and the Livelihoods Science and Technology Innovation Project of Chongqing (cstc2016shmszx20004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Jiang.

Ethics declarations

The sample analysis experimental protocol was approved by the University Ethical Committee of Chongqing Medical University, and their guidelines were followed throughout this study.

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(PDF 196 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, M., He, D., Wang, M. et al. NiMoO4 nanosheet arrays anchored on carbon cloth as 3D open electrode for enzyme-free glucose sensing with improved electrocatalytic activity. Anal Bioanal Chem 410, 7921–7929 (2018). https://doi.org/10.1007/s00216-018-1413-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1413-z

Keywords

Navigation