Skip to main content

Advertisement

Log in

Applications of bone regeneration hydrogels in the treatment of bone defects: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hydrogels can be designed as scaffolds in bone tissue engineering for more efficient healing of bone defects. Bone regeneration hydrogels have attracted extensive attention because of their good biocompatibility and excellent ability in promoting bone regeneration. This review will introduce the methods of bone regeneration hydrogels in the treatment of bone defects. Namely, promoting differentiation and proliferation of osteoblasts, promoting angiogenesis, regulating immune response and promoting mineralization. With the aim to deeply understand the development of bone regeneration hydrogels, we evaluate and summarize its characteristic, so as to help the future research.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Bartl R, Bartl C (2017) Structure and architecture of bone. In: Bone disorders. Springer, Cham. New York, pp 11–20. https://doi.org/10.1007/978-3-319-29182-6_2

  2. Osman K, Gabr A, Haddad FS (2019) Bone healing. In: Paschos N, Bentley G (eds) General orthopaedics and basic science. Orthopaedic Study Guide Series. Springer, Cham. New York, pp 111–119. https://doi.org/10.1007/978-3-319-92193-8_14

  3. Bartl R, Bartl C (2017) Fracture healing. In: Bone disorders. Springer, Cham. New York, pp 239–242. https://doi.org/10.1007/978-3-319-29182-6_35

  4. Li JL, Melissa AK, David LS (2019) Fracture healing. In: Basic and applied bone biology, 2nd ed. Elsevier/Academic Press. London, pp 235–253. https://doi.org/10.1016/B978-0-12-813259-3.00012-9

  5. Angshuman B, Ambalangodage C, Jayasuriya (2020) Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Mater Sci Eng C 110:110698. https://doi.org/10.1016/j.msec.2020.110698

    Article  CAS  Google Scholar 

  6. Zheng TY, Guo LY, Du ZY, Leng HJ, Cai Q, Yang XP (2021) Bioceramic fibrous scaffolds built with calcium silicate/hydroxyapatite nanofibers showing advantages for bone regeneration. CERAM INT 47:18920–18930. https://doi.org/10.1016/j.ceramint.2021.03.234

    Article  CAS  Google Scholar 

  7. Li XF, Song T, Chen XN, Wang ML, Yang X, Xiao YM, Zhang XD (2019) Osteoinductivity of porous biphasic calcium phosphate ceramic spheres with nanocrystalline and their efficacy in guiding bone regeneration. ACS Appl Mater Interfaces 11:3722–3736. https://doi.org/10.1021/acsami.8b18525

    Article  CAS  Google Scholar 

  8. He FP, Lu TL, Fang XB, Feng SH, Feng SL, Tian Y, Li YH, Zuo F, Deng X, Ye JD (2020) Novel extrusion-microdrilling approach to fabricate calcium phosphate-based bioceramic scaffolds enabling fast bone regeneration. ACS Appl Mater Interfaces 2020:32340–32351. https://doi.org/10.1021/acsami.0c07304

    Article  CAS  Google Scholar 

  9. Aslankoohi N, Mequanint K (2020) Poly(ester amide)—bioactive glass hybrid biomaterials for bone regeneration and biomolecule delivery. ACS Appl Bio Mater 3:3621–3630. https://doi.org/10.1021/acsabm.0c00257

    Article  CAS  Google Scholar 

  10. Zheng ZW, Chen YH, Guo B, Wang Y, Liu W, Sun J, Wang XS (2020) Magnesium-organic framework-based stimuli-responsive systems that optimize the bone microenvironment for enhanced bone regeneration. Chem Eng J 396:125241. https://doi.org/10.1016/j.cej.2020.125241

    Article  CAS  Google Scholar 

  11. Seong YJ, Song EH, Park C, Lee H, Kang IG, Kim HE, Jeong SH (2020) Porous calcium phosphate—collagen composite microspheres for effective growth factor delivery and bone tissue regeneration. Mater Sci Eng C 109:110480. https://doi.org/10.1016/j.msec.2019.110480

    Article  CAS  Google Scholar 

  12. Yasutaka M, Fumuki Y, Hideki N, Yuji M, Kousuke I, Toshihiko Y, Sakae T, Kazuhiko I, Yosuke O, Toru M, Taku S (2019) Multi-layered PLLA-nanosheets loaded with FGF-2 induce robust bone regeneration with controlled release in critical-sized mouse femoral defects. Acta Biomater 85:172–179. https://doi.org/10.1016/j.actbio.2018.12.031

    Article  CAS  Google Scholar 

  13. Chen K, Lin XF, Zhang Q, Ni JF, Li JM, Xiao J, Wang Y, Ye YH, Chen L, Jin KK, Chen L (2015) Decellularized periosteum as a potential biologic scaffold for bone tissue engineering. Acta Biomater 19:46–55. https://doi.org/10.1016/j.actbio.2015.02.020

    Article  CAS  Google Scholar 

  14. Bai X, Gao MZ, Syed S, Zhuang J, Xu XY, Zhang XQ (2018) Bioactive hydrogels for bone regeneration. Bioact Mater 3:401–417. https://doi.org/10.1016/j.bioactmat.2018.05.006

    Article  Google Scholar 

  15. Saravanan S, Vimalraj S, Thanikaivelan P, Banudevi S, Manivasagam G (2019) A review on injectable chitosan/beta glycerophosphate hydrogels for bone tissue regeneration. Int J Biol Macromol 121:38–54. https://doi.org/10.1016/j.ijbiomac.2018.10.014

    Article  CAS  Google Scholar 

  16. Marco CB, Vinoy T, Gudrun S, Yogesh KV, Chu TG, Michael JK, Gregg MJ (2012) Recent advances in the development of GTR/GBR membranes for periodontal regeneration—a materials perspective. Dent Mater 28:703–721. https://doi.org/10.1016/j.dental.2012.04.022

    Article  CAS  Google Scholar 

  17. Afshar M, Dini G, Vaezifar S, Mehdikhani M, Movahedi B (2020) Preparation and characterization of sodium alginate/polyvinyl alcohol hydrogel containing drug-loaded chitosan nanoparticles as a drug delivery system. J Drug Deliv Sci Technol 56:101530. https://doi.org/10.1016/j.jddst.2020.101530

    Article  CAS  Google Scholar 

  18. Zhai PS, Peng XX, Li BQ, Liu YP, Sun HC, Li XW (2020) The application of hyaluronic acid in bone regeneration. Int J Biol Macromol 151:1224–1239. https://doi.org/10.1016/j.ijbiomac.2019.10.169

    Article  CAS  Google Scholar 

  19. Matthew RA, Janet MH, David BB (2004) Periosteum: biology, regulation, and response to osteoporosis therapies. Bone 35:1003–1012. https://doi.org/10.1016/j.bone.2004.07.014

    Article  CAS  Google Scholar 

  20. Alonzo M, Primo FA, Kumar SA, Muldoff JA, Dominguez E, Fregoso G, Ortiz N, Weiss WM, Joddar B (2021) Bone tissue engineering techniques, advances, and scaffolds for treatment of bone defects. Curr opin Biomed Eng 17:100248. https://doi.org/10.1016/j.cobme.2020.100248

    Article  CAS  Google Scholar 

  21. Hussain I, Sayed MS, Liu SL, Oderinde O, Yao F, Fu GD (2018) Glycogen-based self-healing hydrogels with ultra-stretchable, flexible, and enhanced mechanical properties via sacrificial bond interactions. Int J Biol Macromol 117:648–658. https://doi.org/10.1016/j.ijbiomac.2018.04.088

    Article  CAS  Google Scholar 

  22. Sakai T, Matsunaga T, Yamamoto Y, Ito C, Yoshida R, Suzuki S, Sasaki N, Shibayama M, Chung U (2008) Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules 41:5379–5384. https://doi.org/10.1021/ma800476x

    Article  CAS  Google Scholar 

  23. Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15:1155–1158. https://doi.org/10.1002/adma.200304907

    Article  CAS  Google Scholar 

  24. Chen Q, Chen H, Zhu L, Zheng J (2015) Fundamentals of double network hydrogels. J Mat Chem B 3:3654–3676. https://doi.org/10.1039/C5TB00123D

    Article  CAS  Google Scholar 

  25. Guo F, Huang KQ, Niu JJ, Kuang TR, Zheng YJ, Gu ZP, Zou J (2020) Enhanced osseointegration of double network hydrogels via calcium polyphosphate incorporation for bone regeneration. Int J Biol Macromol 151:1126–1132. https://doi.org/10.1016/j.ijbiomac.2019.10.155

    Article  CAS  Google Scholar 

  26. Kaur G, Valarmathi MT, Potts JD, Jabbari E, Sabo-Attwood T, Qian W (2010) Regulation of osteogenic differentiation of rat bone marrow stromal cells on 2D nanorod substrates. Biomaterials 31:1732–1741. https://doi.org/10.1016/j.biomaterials.2009.11.041

    Article  CAS  Google Scholar 

  27. Gaihre B, Liu XF, Li LL, Miller AL, Camilleri ET, Li Y, Waletzki B, Lu LC (2021) Bifunctional hydrogels for potential vascularized bone tissue regeneration. Mater Sci Eng C 124:112075. https://doi.org/10.1016/j.msec.2021.112075

    Article  CAS  Google Scholar 

  28. Ou QM, Huang KQ, Fu CQ, Huang CL, Fang YF, Gu ZP, Wu J, Wang Y (2020) Nanosilver-incorporated halloysite nanotubes/gelatin methacrylate hybrid hydrogels with osteoimmunomodulatory and antibacterial activity for bone Regeneration. Chem Eng J 382:123019. https://doi.org/10.1016/j.cej.2019.123019

    Article  CAS  Google Scholar 

  29. Huang KQ, Wu J, Gu ZP (2018) Black phosphorus hydrogels scaffolds enhance bone regeneration via a sustained supply of calcium-free phosphorus. ACS Appl Mater Interfaces 11:2908–2916. https://doi.org/10.1021/acsami.8b21179

    Article  CAS  Google Scholar 

  30. Yi L, Zhong T, Huang YB, Huang SP (2020) Triiodothyronine promotes the osteoblast formation by activating autophagy. Biophys Chem 267:106483. https://doi.org/10.1016/j.bpc.2020.106483

    Article  CAS  Google Scholar 

  31. Radhakrishnan J, Manigandan A, Chinnaswamy P, Subramanian A, Sethuraman S (2018) Gradient nano-engineered in situ forming composite hydrogels for osteochondral regeneration. Biomaterials 162:82–98. https://doi.org/10.1016/j.biomaterials.2018.01.056

    Article  CAS  Google Scholar 

  32. Yaylaci SU, Sen M, Bulut O, Arslan E, Guler MO, Tekinay AB (2016) Chondrogenic differentiation of mesenchymal stem cells on glycosaminoglycan-mimetic peptide nanofibers. ACS Biomater Sci Eng 2:871–878. https://doi.org/10.1021/acsbiomaterials.6b00099

    Article  CAS  Google Scholar 

  33. Schuurmans CCL, Mihajlovic M, Hiemstra C, Ito K, Hennink WE, Vermonden T (2021) Hyaluronic acid and chondroitin sulfate (meth)acrylate-based hydrogels for tissue engineering: synthesis, characteristics and pre-clinical evaluation. Biomaterials 268:120602. https://doi.org/10.1016/j.biomaterials.2020.120602

    Article  CAS  Google Scholar 

  34. Liu X, Liu S, Yang R, Wang PH, Zhang WJ, Tan XY, Ren YH, Chi B (2021) Gradient chondroitin sulfate/poly (γ-glutamic acid) hydrogels inducing differentiation of stem cells for cartilage tissue engineering. Carbohydr Polym 270:118330. https://doi.org/10.1016/j.carbpol.2021.118330

    Article  CAS  Google Scholar 

  35. Ma FB, Xia XY, Tang B (2019) Strontium chondroitin sulfate/silk fibroin blend membrane containing microporous structure modulates macrophage responses for guided bone regeneration. Mater Sci Eng C—Mater Biol Appl 117:111368. https://doi.org/10.1016/j.carbpol.2019.02.068

    Article  CAS  Google Scholar 

  36. Zhang W, Zhao FJ, Huang DQ, Fu XL, Li X, Chen XF (2016) Strontium-substituted submicrometer bioactive glasses modulate macrophage responses for improved bone regeneration. ACS Appl Mater Interfaces 8:30747–30758. https://doi.org/10.1021/acsami.6b10378

    Article  CAS  Google Scholar 

  37. Ma FB, Li SJ, Ruiz-Ortega LI, Zhang YJ, Xu L, Wang K, Lin LJ (2020) Effects of alginate/chondroitin sulfate-based hydrogels on bone defects healing. Mater Sci Eng C 116:111217. https://doi.org/10.1016/j.msec.2020.111217

    Article  CAS  Google Scholar 

  38. Mierzwa AGH, Campos JF, Jesus MF, Nader HB, Lazaretti-Castro M (2017) Different doses of strontium ranelate and mechanical vibration modulate distinct responses in the articular cartilage of ovariectomized rats. Osteoarthr Cartil 25:1179–1188. https://doi.org/10.1016/j.joca.2017.02.793

    Article  CAS  Google Scholar 

  39. Edward ON, Guleid A, Leila D, Obum U, Kevin WHL (2018) The roles of ions on bone regeneration. Drug Discov Today 23:879–890. https://doi.org/10.1016/j.drudis.2018.01.049

    Article  CAS  Google Scholar 

  40. Xu L, Ma FB, Leung FKL, Qin CH, Lu WW, Tang B (2021) Chitosan-strontium chondroitin sulfate scaffolds for reconstruction of bone defects in aged rats. Carbohydr Polym 273:118532. https://doi.org/10.1016/j.carbpol.2021.118532

    Article  CAS  Google Scholar 

  41. Lam J, Truong NF, Segura T (2014) Design of cell-matrix interactions in hyaluronic acid hydrogels scaffolds. Acta Biomater 10:1571–1580

    Article  CAS  Google Scholar 

  42. An SW, Choi SJ, Min SJ, Cho SW (2021) Hyaluronic acid-based biomimetic hydrogels for tissue engineering and medical applications. Biotechnol Bioprocess Eng 26:503–516. https://doi.org/10.1007/s12257-020-0343-8

    Article  CAS  Google Scholar 

  43. Abdul-Monem MM, Kamoun EA, Ahmed DM, El-Fakharany EM, Al-Abbassy FH, Aly HM (2021) Light-cured hyaluronic acid composite hydrogels using riboflavin as a photoinitiator for bone regeneration applications. J Taibah Univ Med Soc 16:529–539. https://doi.org/10.1016/j.jtumed.2020.12.021

    Article  Google Scholar 

  44. Taz M, Makkar P, Imran KM, Jang DW, Kim YS, Lee BT (2019) Bone regeneration of multichannel biphasic calcium phosphate granules supplemented with hyaluronic acid. Mater Sci Eng C 99:1058–1066. https://doi.org/10.1016/j.msec.2019.02.051

    Article  CAS  Google Scholar 

  45. Kaczmarek B, Sionkowska A, Kozlowska J, Osyczka A (2018) New composite materials prepared by calcium phosphate precipitation in chitosan/collagen/hyaluronic acid sponge cross-linked by EDC/NHS. Int J Biol Macromol 107:247–253. https://doi.org/10.1016/j.ijbiomac.2017.08.173

    Article  CAS  Google Scholar 

  46. Lee SJ, Nah H, Heo DN, Kim KH, Seok JM, Heo M, Moon HJ, Lee D, Lee JS, An SY, Hwang YS, Ko WK, Kim SJ, Sohn S, Park SA, Park SY, Kwon IK (2020) Induction of osteogenic differentiation in a rat calvarial bone defect model using an in situ forming graphene oxide incorporated glycol chitosan/oxidized hyaluronic acid injectable hydrogels. Carbon 168:264–277. https://doi.org/10.1016/j.carbon.2020.05.022

    Article  CAS  Google Scholar 

  47. Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A (2015) Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73:254–271. https://doi.org/10.1016/j.biomaterials.2015.08.045

    Article  CAS  Google Scholar 

  48. Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A (2010) Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31:5536–5544. https://doi.org/10.1016/j.biomaterials.2010.03.064

    Article  CAS  Google Scholar 

  49. Neffe AT, Zaupa A, Pierce BJ, Hofmann D, Lendlein A (2010) Knowledge-based tailoring of gelatin-based materials by functionalization with tyrosine-derived groups. Macromol Rapid Commun 31:1534–1539. https://doi.org/10.1002/marc.201000274

    Article  CAS  Google Scholar 

  50. Gan DL, Xu T, Xing WS, Wang MH, Fang J, Wang KF, Ge X, Chen CW, Ren FZ, Tan H, Lu X (2019) Mussel-inspired dopamine oligomer intercalated tough and resilient gelatin methacryloyl (GelMA) hydrogels for cartilage regeneration. J Mater Chem B 7:1716–1725. https://doi.org/10.1039/c8tb01664j

    Article  CAS  Google Scholar 

  51. Paul A, Manoharan V, Krafft D, Assmann A, Uquillas JA, Shin SR, Hasan A, Hussain MA, Memic A, Gaharwar AK (2016) Nanoengineered biomimetic hydrogels for guiding human stem cell osteogenesis in three dimensional microenvironments. J Mater Chem B 4:3544–3554. https://doi.org/10.1039/C5TB02745D

    Article  CAS  Google Scholar 

  52. Elomaa L, Keshi E, Sauer IM, Weinhart M (2020) Development of GelMA/PCL and dECM/PCL resins for 3D printing of acellular in vitro tissue scaffolds by stereolithography. Mater Sci Eng C 112:110958. https://doi.org/10.1016/j.msec.2020.110958

    Article  CAS  Google Scholar 

  53. Cao YY, Cheng P, Sang SB, Xiang C, An Y, Wei XC, Yan YY, Li PC (2021) 3D printed PCL/GelMA biphasic scaffold boosts cartilage regeneration using co-culture of mesenchymal stem cells and chondrocytes: In vivo study. Mater Des 210:110065. https://doi.org/10.1016/j.matdes.2021.110065

    Article  CAS  Google Scholar 

  54. Ribeiro JS, Bordini EAF, Ferreira JA, Mei L, Dubey N, Fenno JC, Piva E, Lund RG, Schwendeman A, Bottino MC (2020) Injectable MMP-responsive nanotube-modified gelatin hydrogels for dental infection ablation. ACS Appl Mater Interfaces 12:16006–16017. https://doi.org/10.1021/acsami.9b22964

    Article  CAS  Google Scholar 

  55. Zargar V, Asghari M, Dashti A (2015) A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. Chem BioEng Rev 2:204–226. https://doi.org/10.1002/cben.201400025

    Article  Google Scholar 

  56. Chen YQ, Udduttula A, Xie XL, Zhou M, Sheng WB, Yu F, Weng J, Wang DL, Teng B, Manivasagam G, Zhang JV, Ren PG, Kang B, Zeng H (2021) A novel photocrosslinked phosphate functionalized Chitosan-Sr5(PO4)2SiO4 composite hydrogels and in vitro biomineralization, osteogenesis, angiogenesis for bone regeneration application. Compos Pt B-Eng 222:109057. https://doi.org/10.1016/j.compositesb.2021.109057

    Article  CAS  Google Scholar 

  57. Purohit SD, Singh H, Bhaskar R, Yadav I, Bhushan S, Gupta MK, Kumar A, Mishra NC (2020) Fabrication of graphene oxide and nanohydroxyapatite reinforced gelatin-alginate nanocomposite scaffold for bone tissue regeneration. Front Mater 7:250. https://doi.org/10.3389/fmats.2020.00250

    Article  Google Scholar 

  58. Bundela H, Bajpai AK (2008) Designing of hydroxyapatite-gelatin based porous matrix as bone substitute: correlation with biocompatibility aspects. Express Polym Lett 2:201–213. https://doi.org/10.3144/expresspolymlett.2008.25

    Article  CAS  Google Scholar 

  59. Deng LZ, Liu Y, Yang LQ, Yi JZ, Deng FL, Zhang LM (2020) Injectable and bioactive methylcellulose hydrogels carrying bone mesenchymal stem cells as a filler for critical-size defects with enhanced bone regeneration. Coll and Surf B Biointerfaces 194:111159. https://doi.org/10.1016/j.colsurfb.2020.111159

    Article  CAS  Google Scholar 

  60. Pan YS, Zhao Y, Kuang R, Liu H, Sun D, Mao TJ, Jiang KX, Yang XT, Watanabe N, Mayo KH, Lin Q, Li J (2020) Injectable hydrogels-loaded nano-hydroxyapatite that improves bone regeneration and alveolar ridge promotion. Mater Sci Eng C—Mater Biol Appl 116:111158. https://doi.org/10.1016/j.msec.2020.111158

    Article  CAS  Google Scholar 

  61. Kim EJ, Choi JS, Kim JS, Choi YC, Cho YW (2016) Injectable and thermosensitive soluble extracellular matrix and methylcellulose hydrogels for stem cell delivery in skin wounds. Biomacromolecules 17:4–11. https://doi.org/10.1021/acs.biomac.5b01566

    Article  CAS  Google Scholar 

  62. Dhivya S, Saravanan S, Sastry TP, Selvamurugan N (2015) Nanohydroxyapatite reinforced chitosan composite hydrogels for bone tissue repair in vitro and in vivo. J Nanobiotechnol 13:40. https://doi.org/10.1186/s12951-015-0099-z

    Article  CAS  Google Scholar 

  63. Rocha JHG, Lemos AF, Kannan S, Agathopoulos S, Ferreira JMF (2005) Hydroxyapatite scaffolds hydrothermally grown from aragonitic cuttlefish bones. J Mater Chem 15:5007–5011. https://doi.org/10.1039/B510122K

    Article  CAS  Google Scholar 

  64. Haberko K, Bućko MM, Brzezińska-Miecznik J, Haberko M, Mozgawa W, Panz T, Pyda A, Zarębski J (2006) Natural hydroxyl apatite its behaviour during heat treatment. J Eur Ceram Soc 26:537–542. https://doi.org/10.1016/j.jeurceramsoc.2005.07.033

    Article  CAS  Google Scholar 

  65. Idris A, Ibiyeye TH, Abubakar MB, Haruna S, Hindatu Y, Mohammed NJ, Sulaiman M (2014) From garbage to biomaterials: an overview on egg shell based hydroxyapatite. J Mater 2014:1–6. https://doi.org/10.1155/2014/802467

    Article  CAS  Google Scholar 

  66. Arjama M, Mehnath S, Rajan M, Jeyaraj M (2021) Injectable cuttlefish HAP and macromolecular fibroin protein hydrogels for natural bone mimicking matrix for enhancement of osteoinduction progression. React Funct Pol 160:104841. https://doi.org/10.1016/j.reactfunctpolym.2021.104841

    Article  CAS  Google Scholar 

  67. Davoudi S, Chin CY, Cooke MJ, Tam RY, Shoichet MS, Gilbert PM (2018) Muscle stem cell intramuscular delivery within hyaluronan methylcellulose improves engraftment efficiency and dispersion. Biomaterials 173:34–46

    Article  CAS  Google Scholar 

  68. Choi WI, Hwang Y, Sahu A, Min K, Sung D, Tae G, Chang JH (2018) An injectable and physical levan-based hydrogel as a dermal filler for soft tissue augmentation. Biomater Sci 6:2627–2638. https://doi.org/10.1039/c8bm00524a

    Article  CAS  Google Scholar 

  69. Liu TT, Jin MQ, Zhang YZ, Weng WX, Wang TL, Yang HZ, Zhou L (2021) K+/Sr2+/Na+ triple-doped hydroxyapatites/GelMA composite hydrogels scaffold for the repair of bone defects. Ceram Int 47:30929–30937. https://doi.org/10.1016/j.ceramint.2021.07.277

    Article  CAS  Google Scholar 

  70. Chandra VS, Baskar G, Suganthi RV, Elayaraja K, Joshy A, Beaula SW, Mythili R, Venkatraman G, Kalkura NS (2012) Blood compatibility of iron-doped nanosize hydroxyapatite and its drug release. ACS Appl Mater Interfaces 4:1200–1210. https://doi.org/10.1021/am300140q

    Article  CAS  Google Scholar 

  71. Ullah I, Gloria A, Zhang WC, Ullah MW, Wu B, Li WC, Domingos M, Zhang XL (2020) Synthesis and characterization of sintered Sr/Fe-modified hydroxyapatite bioceramics for bone tissue engineering applications. ACS Biomater Sci Eng 6:375–388. https://doi.org/10.1021/acsbiomaterials.9b01666

    Article  CAS  Google Scholar 

  72. Roohani-Esfahani S, Wong KY, Lu ZF, Chen YJ, Li JJ, Gronthos S, Menicanin D, Shi J, Dunstan C, Zreiqat H (2014) Fabrication of a novel triphasic and bioactive ceramic and evaluation of its in vitro and in vivo cytocompatibility and osteogenesis. J Mater Chem B 2:1866–1878. https://doi.org/10.1039/C3TB21504K

    Article  CAS  Google Scholar 

  73. Kumar A, Kargozar S, Baino F, Han SS (2019) Additive manufacturing methods for producing hydroxyapatite and hydroxyapatite-based composite scaffolds: a review. Front Mater 6:313. https://doi.org/10.3389/fmats.2019.00313

    Article  Google Scholar 

  74. Sarin N, Kurakula M, Singh KJ, Kumar A, Singh D, Arora S (2021) Strontium and selenium doped bioceramics incorporated polyacrylamide-carboxymethylcellulose hydrogels scaffolds: mimicking key features of bone regeneration. J Asian Ceram Soc 9:531–548. https://doi.org/10.1080/21870764.2021.1898168

    Article  Google Scholar 

  75. Kumar A, Han SS (2021) Enhanced mechanical, biomineralization, and cellular response of nanocomposite hydrogels by bioactive glass and halloysite nanotubes for bone tissue regeneration. Mater Sci Eng C—Mater Biol Appl 128:112236. https://doi.org/10.1016/j.msec.2021.112236

    Article  CAS  Google Scholar 

  76. Lin BC, Hu HX, Deng ZW, Pang LB, Jiang HZ, Wang DP, Li JS, Liu ZT, Wang H, Zeng XQ (2020) Novel bioactive glass cross-linked PVA hydrogels with enhanced chondrogenesis properties and application in mice chondrocytes for cartilage repair. J Non-Cryst Solids 529:119594. https://doi.org/10.1016/j.jnoncrysol.2019.119594

    Article  CAS  Google Scholar 

  77. Kumar A, Rao KM, Han SS (2017) Synthesis of mechanically stiff and bioactive hybrid hydrogels for bone tissue engineering applications. Chem Eng J 317:119–131. https://doi.org/10.1016/j.cej.2017.02.065

    Article  CAS  Google Scholar 

  78. Kumar A, Rao KM, Han SS (2018) Mechanically viscoelastic nanoreinforced hybrid hydrogels composed of polyacrylamide, sodium carboxymethylcellulose, graphene oxide, and cellulose nanocrystals. Carbohydr Polym 193:228–238. https://doi.org/10.1016/j.carbpol.2018.04.004

    Article  CAS  Google Scholar 

  79. Zhang LM, Xia JG, Zhao QH, Liu LW, Zhang ZJ (2010) Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6:537–544. https://doi.org/10.1002/smll.200901680

    Article  CAS  Google Scholar 

  80. Nayak TR, Anderson H, Makam VS, Khaw C, Bae S, Xu XF, Ee PLR, Ahn JH, Hong BH, Pastorin G, Özyilmaz B (2011) Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5:4670–4678. https://doi.org/10.1021/nn200500h

    Article  CAS  Google Scholar 

  81. Jiao DL, Zheng A, Liu Y, Zhang XK, Wang X, Wu JN, She WJ, Lv KG, Cao LY, Jiang XQ (2021) Bidirectional differentiation of BMSCs induced by a biomimetic procallus based on a gelatin-reduced graphene oxide reinforced hydrogel for rapid bone regeneration. Bioact Mater 6:2011–2028. https://doi.org/10.1016/j.bioactmat.2020.12.003

    Article  CAS  Google Scholar 

  82. Neffe AT, Zaupa A, Pierce BF, Hoffman D, Lendlein A (2010) Knowledge-based tailoring of gelatin-based materials by functionalization with tyrosine-derived groups. Macromol Macromol Rapid Commun 31:1534–1539. https://doi.org/10.1002/marc.201000274

    Article  CAS  Google Scholar 

  83. Purohit SD, Bhaskar R, Singh H, Yadav I, Gupta MK, Mishra NC (2019) Development of a nanocomposite scaffold of gelatin–alginate–graphene oxide for bone tissue engineering. Int J Biol Macromol 133:592–602. https://doi.org/10.1016/j.ijbiomac.2019.04.113

    Article  CAS  Google Scholar 

  84. Jiang LB, Ding SL, Ding W, Su DH, Zhang FX, Zhang TW, Yin XF, Xiao L, Li YL, Yuan FL, Dong J (2021) Injectable Sericin Based Nanocomposite hydrogels for Multi-modal Imaging-guided Immunomodulatory Bone Regeneration. Chem Eng J 418:129323. https://doi.org/10.1016/j.cej.2021.129323

    Article  CAS  Google Scholar 

  85. Lee WC, Lim CHYX, Shi H, Tang LAL, Wang Y, Lim CT, Loh KP (2011) Origin of enhanced 43 stem cell growth and differentiation on graphene and graphene oxide. ACS Nano 5:7334–7341. https://doi.org/10.1021/nn202190c

    Article  CAS  Google Scholar 

  86. Lambert H, Frassetto L, Moore JB, Torgerson D, Gannon R, Burckhardt P, Lanham-New S (2015) The effect of supplementation with alkaline potassium salts on bone metabolism: a meta-analysis. Osteoporos Int 26:1311–1318. https://doi.org/10.1007/s00198-014-3006-9

    Article  CAS  Google Scholar 

  87. Bigi A, Boanini E, Gazzano M (2016) Ion substitution in biological and synthetic apatites. In: Biomineralization and biomaterials, Elsevier/Academic Press, pp 235–266

  88. Wang YC, Newman MR, Benoit DSW (2018) Development of controlled drug delivery systems for bone fracture-targeted therapeutic delivery: a review. Eur J Pharm Biopharm 127:223–236. https://doi.org/10.1016/j.ejpb.2018.02.023

    Article  CAS  Google Scholar 

  89. Liu S, Chen XY, Zhang Q, Wu W, Xin JY, Li JS (2014) Multifunctional hydrogels based on β-cyclodextrin with both biomineralization and anti-inflammatory properties. Carbohydr Polym 102:869–876. https://doi.org/10.1016/j.carbpol.2013.10.076

    Article  CAS  Google Scholar 

  90. Hedges AR (1998) Industrial applications of cyclodextrins. Chem Rev 98:2035–2044. https://doi.org/10.1021/cr970014w

    Article  CAS  Google Scholar 

  91. Huang L, Xin JY, Guo YC, Li JS (2010) A novel insulin oral delivery system assisted by cationic β-cyclodextrin polymers. J Appl Polym Sci 115:1371–1379. https://doi.org/10.1002/app.30775

    Article  CAS  Google Scholar 

  92. Roth JA, Kim BG, Lin WL, Cho MI (1999) Melatonin promotes osteoblast differentiation and bone formation. J Biol Chem 274:22041–22047. https://doi.org/10.1074/jbc.274.31.22041

    Article  CAS  Google Scholar 

  93. Terauchi M, Tamura A, Yamaguchi S, Yui N (2018) Enhanced cellular uptake and osteogenic differentiation efficiency of melatonin by inclusion complexation with 2-hydroxypropyl β-cyclodextrin. Int J Pharm 547:53–60. https://doi.org/10.1016/j.ijpharm.2018.05.063

    Article  CAS  Google Scholar 

  94. Zhang JX, Ma PX (2013) Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv Drug Deliv Rev 65:1215–1233. https://doi.org/10.1016/j.addr.2013.05.001

    Article  CAS  Google Scholar 

  95. Rosario CD, Rodríguez-Évora M, Reyes R, Simões S, Concheiro A, Évora C, Alvarez-Lorenzo C, Delgado A (2015) Bone critical defect repair with poloxamine–cyclodextrin supramolecular gels. Int J Pharm 495:463–473. https://doi.org/10.1016/j.ijpharm.2015.09.003

    Article  CAS  Google Scholar 

  96. Liao J, Wu S, Li K, Fan YB, Dunne N, Li XM (2019) Peptide-modified bone repair materials: Factors influencing osteogenic activity. J Biomed Mater Res Part A 107:1491–1512. https://doi.org/10.1002/jbm.a.36663

    Article  CAS  Google Scholar 

  97. Erak M, Bellmann-Sickert K, Els-Heindl S, Beck-Sickinger AG (2018) Peptide chemistry toolbox—transforming natural peptides into peptide therapeutics. Bioorg Med Chem 26:2759–2765. https://doi.org/10.1016/j.bmc.2018.01.012

    Article  CAS  Google Scholar 

  98. Jabbari E (2013) Osteogenic peptides in bone regeneration. Curr Pharm Des 19:3391–3402. https://doi.org/10.2174/1381612811319190006

    Article  CAS  Google Scholar 

  99. Saito A, Suzuki Y, Ogata SI, Ohtsuki C, Tanihana M (2005) Accelerated bone repair with the use of a synthetic BMP-2-derived peptide and bone-marrow stromal cells. J Biomed Mater Res Part A 72A:77–82. https://doi.org/10.1002/jbm.a.30208

    Article  CAS  Google Scholar 

  100. Li RX, Sun Y, Cai ZW, Li Y, Sun J, Bi W, Yang F, Zhou QR, Ye TJ, Yu YC (2021) Highly bioactive peptide-HA photo-crosslinking hydrogels for sustained promoting bone regeneration. Chem Eng J 415:129015. https://doi.org/10.1016/j.cej.2021.129015

    Article  CAS  Google Scholar 

  101. Almubarak S, Nethercott H, Freeberg M, Beaudon C, Jha A, Jackson W, Marcucio R, Miclau T, Healy K, Bahney C (2016) Tissue engineering strategies for promoting vascularized bone regeneration. Bone 83:197–209. https://doi.org/10.1016/j.bone.2015.11.011

    Article  CAS  Google Scholar 

  102. Yin J, Gong G, Sun C, Yin ZY, Zhu C, Wang B, Hu Q, Zhu YR, Liu XH (2018) Angiopoietin 2 promotes angiogenesis in tissue-engineered bone and improves repair of bone defects by inducing autophagy. Biomed Pharm 105:932–939. https://doi.org/10.1016/j.biopha.2018.06.078

    Article  CAS  Google Scholar 

  103. Seebach C, Henrich D, Kähling C, Wilhelm K, Tami AE, Alini M, Marzi I (2010) Endothelial progenitor cells and mesenchymal stem cells seeded onto beta-TCP granules enhance early vascularization and bone healing in a critical-sized bone defect in rats. Tissue Eng Part A 16:1961–1970. https://doi.org/10.1089/ten.TEA.2009.0715

    Article  CAS  Google Scholar 

  104. Wang T, Guo S, Zhang H, Chen YQ, Cai Y (2020) Injectable hydrogels delivering bone morphogenetic protein-2, vascular endothelial growth factor, and adipose-derived stem cells for vascularized bone tissue engineering. J Drug Deliv Sci Technol 57:101637. https://doi.org/10.1016/j.jddst.2020.101637

    Article  CAS  Google Scholar 

  105. Apte RS, Chen DS, Ferrara N (2019) VEGF in signaling and disease: beyond discovery and development. Cell 176:1248–1264. https://doi.org/10.1016/j.cell.2019.01.021

    Article  CAS  Google Scholar 

  106. Wang KK, Cheng WN, Ding ZZ, Xu G, Zheng X, Li MR, Lu GZ, Lu Q (2020) Injectable silk/hydroxyapatite nanocomposite hydrogels with vascularization capacity for bone regeneration. J Mater Sci Technol 63:172–181. https://doi.org/10.1016/j.jmst.2020.02.030

    Article  Google Scholar 

  107. Tan JL, Zhang M, Hai ZJ, Wu CF, Lin J, Kuang W, Tang H, Huang YL, Chen XD, Liang GL (2019) Sustained release of two bioactive factors from supramolecular hydrogels promotes periodontal bone regeneration. ACS Nano 13:5616–5622. https://doi.org/10.1021/acsnano.9b00788

    Article  CAS  Google Scholar 

  108. Li GJ, An JD, Han XW, Zhang XL, Wang WJ, Wang SK (2019) Hypermethylation of microRNA-149 activates SDF-1/CXCR4 to promote osteogenic differentiation of mesenchymal stem cells. J Cell Physiol 234:23485–23494. https://doi.org/10.1002/jcp.28917

    Article  CAS  Google Scholar 

  109. Ran QC, Yu YL, Chen WZ, Shen XK, Mu CY, Yuan Z, Tao BL, Hu Y, Yang WH, Cai KY (2018) Deferoxamine loaded titania nanotubes substrates regulate osteogenic and angiogenic differentiation of MSCs via activation of HIF-1α signaling. Mater Sci Eng C 91:44–54. https://doi.org/10.1016/j.msec.2018.04.098

    Article  CAS  Google Scholar 

  110. Li PY, Sakuma K, Tsuchiya S, Sun LH, Hayamizu Y (2019) Fibroin-like peptides self-assembling on two-dimensional materials as a molecular scaffold for potential biosensing. ACS Appl Mater Interfaces 11:20670–20677. https://doi.org/10.1021/acsami.9b04079

    Article  CAS  Google Scholar 

  111. Kong LZ, Wu Z, Zhao HK, Cui HM, Shen J, Chang J, Li HY, He YH (2018) Bioactive injectable hydrogels containing desferrioxamine and bioglass for diabetic wound healing. ACS Appl Mater Interfaces 10:30103–30114. https://doi.org/10.1021/acsami.8b09191

    Article  CAS  Google Scholar 

  112. Yoshizawa S, Brown A, Barchowsky A, Sfeir C (2014) Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation. Acta Biomater 10:2834–2842. https://doi.org/10.1016/j.actbio.2014.02.002

    Article  CAS  Google Scholar 

  113. Zhang XT, Huang PZ, Jiang GW, Zhang MD, Yu F, Dong XP, Wang LP, Chen YH, Zhang WT, Qi Y, Li WQ, Zeng H (2021) A novel magnesium ion-incorporating dual-crosslinked hydrogels to improve bone scaffold-mediated osteogenesis and angiogenesis. Mater Sci Eng C 121:111868. https://doi.org/10.1016/j.msec.2021.111868

    Article  CAS  Google Scholar 

  114. Tan J, Wang DH, Cao HL, Qiao YQ, Zhu HQ, Liu XY (2018) Effect of local alkaline micro-environment on the behaviors of bacteria and osteogenic cells. ACS Appl Mater Interfaces 10:42018–42029. https://doi.org/10.1021/acsami.8b15724

    Article  CAS  Google Scholar 

  115. Wei PF, Jing W, Yuan ZY, Huang YQ, Guan BB, Zhang WX, Zhang X, Mao JP, Cai Q, Chen DF, Yang XP (2019) Vancomycin- and strontium-loaded microspheres with multifunctional activities against bacteria, angiogenesis, and in osteogenesis for enhancing infected bone regeneration. ACS Appl Mater Interfaces 11:30596–30609. https://doi.org/10.1021/acsami.9b10219

    Article  CAS  Google Scholar 

  116. Qiu PC, Li MB, Chen K, Fang B, Chen PF, Tang ZB, Lin XF, Fan SW (2020) Periosteal matrix-derived hydrogels promotes bone repair through an early immune regulation coupled with enhanced angio- and osteogenesis. Biomaterials 227:119552. https://doi.org/10.1016/j.biomaterials.2019.119552

    Article  CAS  Google Scholar 

  117. Wang TT, Luu TU, Chen A, Khine M, Liu WF (2016) Topographical modulation of macrophage phenotype by shrink-film multi-scale wrinkles. Biomater Sci 4:948–952. https://doi.org/10.1039/c6bm00224b

    Article  CAS  Google Scholar 

  118. Liu WJ, Sun J, Sun Y, Xiang Y, Yan YF, Han ZH, Bi W, Yang F, Zhou QR, Wang L, Yu YC (2020) Multifunctional injectable protein-based hydrogels for bone regeneration. Chem Eng J 394:124875. https://doi.org/10.1016/j.cej.2020.124875

    Article  CAS  Google Scholar 

  119. Zhang DH, Chen Q, Zhang WJ, Liu HJ, Liu RH (2020) Silk-inspired beta-peptide materials resist fouling and the foreign-body response. Angew Chem Int Ed Engl 59:9586–9593. https://doi.org/10.1002/anie.202000416

    Article  CAS  Google Scholar 

  120. Jetten N, Verbruggen S, Gijbels MJ, Post MJ, Winther MPJD, Donners MMPC (2014) Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis 17:109–118

    Article  CAS  Google Scholar 

  121. Wang M, Yu YM, Dai K, Ma ZY, Liu Y, Wang J, Liu CS (2016) Improved osteogenesis and angiogenesis of magnesium-doped calcium phosphate cement via macrophage immunomodulation. Biomater Sci 4:1574–1583. https://doi.org/10.1039/c6bm00290k

    Article  CAS  Google Scholar 

  122. He JH, Chen GB, Liu MY, Xu ZL, Chen H, Yang L, Lv YG (2020) Scaffold strategies for modulating immune microenvironment during bone regeneration. Mater Sci Eng C Mater Biol Appl 108:110411. https://doi.org/10.1016/j.msec.2019.110411

    Article  CAS  Google Scholar 

  123. Huang LP, Zhang JH, Hu JF, Zhao TB, Gu ZP (2020) Biomimetic gelatin methacrylate/nano fish bone hybrid hydrogels for bone regeneration via osteoimmunomodulation. ACS Biomater Sci Eng 6:3270–3274. https://doi.org/10.1021/acsbiomaterials.0c00443

    Article  CAS  Google Scholar 

  124. Zimmermann EA, Ritchie RO (2015) Bone as a structural material. Adv Healthc Mater 4:1287–1304. https://doi.org/10.1002/adhm.201500070

    Article  CAS  Google Scholar 

  125. Bonucci E (2012) Bone mineralization. Front Biosci 17:100–128. https://doi.org/10.2741/3918

    Article  CAS  Google Scholar 

  126. Estroff LA, Addadi L, Weiner S, Hamilton AD (2004) An organic hydrogels as a matrix for the growth of calcite crystals. Org Biomolecular Chem 2:137–141. https://doi.org/10.1039/b309731e

    Article  CAS  Google Scholar 

  127. Song J, Malathong V, Bertozzi CR (2004) Mineralization of synthetic polymer scaffolds: a bottom-up approach for the development of artificial bone. J Am Chem Soc 127:3366–3372. https://doi.org/10.1021/ja043776z

    Article  CAS  Google Scholar 

  128. Yao SS, Xu YF, Zhou YY, Shao CY, Liu ZM, Jin B, Zhao RB, Cao H, Pan HH, Tang RK (2019) Calcium phosphate nanocluster-loaded injectable hydrogels for bone regeneration. ACS Appl Bio Mater 2:4408–4417. https://doi.org/10.1021/acsabm.9b00270

    Article  CAS  Google Scholar 

  129. Olszta MJ, Cheng XG, Jee SS, Kumar R, Kim YY, Kaufman MJ, Douglas EP, Gower LB (2007) Bone structure and formation: a new perspective. Mater Sci Eng R Rep 58:77–116. https://doi.org/10.1016/j.mser.2007.05.001

    Article  CAS  Google Scholar 

  130. Niu LN, Jiao K, Ryou HJ, Yiu CKY, Chen JH, Breschi L, Arola DD, Pashley DH, Tay FR (2012) Multiphase intrafibrillar mineralization of collagen. Angew Chem Int Ed Engl 52:5762–5766. https://doi.org/10.1002/anie.201210259

    Article  CAS  Google Scholar 

  131. Yu XH, Zhang DW, Zheng XL, Tang CK (2019) Cholesterol transport system: an integrated cholesterol transport model involved in atherosclerosis. Prog Lipid Res 73:65–91. https://doi.org/10.1016/j.plipres.2018.12.002

    Article  CAS  Google Scholar 

  132. Dong ZH, Yang Q, Mei MY, Liu L, Sun JX, Zhao L, Zhou CC (2018) Preparation and characterization of fluoride calcium silicate composites with multi-biofunction for clinical application in dentistry. Compos Part B Eng 143:243–249. https://doi.org/10.1016/j.compositesb.2018.02.009

    Article  CAS  Google Scholar 

  133. Zhang XT, He YY, Huang PZ, Jiang GW, Zhang MD, Yu F, Zhang WT, Fu G, Wang Y, Li WQ, Zeng H (2020) A novel mineralized high strength hydrogels for enhancing cell adhesion and promoting skull bone regeneration in situ. Compos Part B Eng 197:108183. https://doi.org/10.1016/j.compositesb.2020.108183

    Article  CAS  Google Scholar 

  134. Huang L, Zhu ZY, Wu DW, Gan WD, Zhu SS, Li WQ, Tian JH, Li LH, Zhou CR, Lu L (2019) Antibacterial poly (ethylene glycol) diacrylate/chitosan hydrogels enhance mechanical adhesiveness and promote skin regeneration. Carbohydr Polym 225:115110. https://doi.org/10.1016/j.carbpol.2019.115110

    Article  CAS  Google Scholar 

  135. Penido MGMG, Alon US (2012) Phosphate homeostasis and its role in bone health. Pediatr Nephrol 27:2039–2048. https://doi.org/10.1007/s00467-012-2175-z

    Article  Google Scholar 

  136. Zhang R, Zhou XY, Zhang D, Lou WK, Zhai F, Chang K (2015) Electronic and magneto-optical properties of monolayer phosphorene quantum dots. 2D Mater 2:045012. https://doi.org/10.1088/2053-1583/2/4/045012

    Article  CAS  Google Scholar 

  137. Chen WS, Ouyang J, Liu H, Chen M, Zeng K, Sheng JP, Liu ZJ, Han YJ, Wang LQ, Li J, Deng L, Liu YN, Guo SJ (2017) Black phosphorus nanosheet‐based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Adv Mater 29:1603864.1–1603864.7. https://doi.org/10.1002/adma.201603864

  138. Shao JD, Xie HH, Huang H, Li ZB, Sun ZB, Xu YH, Xiao QL, Yu XF, Zhao YT, Zhang H, Wang HY, Chu PK (2016) Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat Commun 7:12967. https://doi.org/10.1038/ncomms12967

    Article  CAS  Google Scholar 

  139. Ziletti A, Carvalho A, Campbell DK, Coker DF, Neto AHC (2015) Oxygen defects in phosphorene. Phys Rev Lett 114:046801. https://doi.org/10.1103/PhysRevLett.114.046801

    Article  CAS  Google Scholar 

  140. Rau LR, Huang WY, Liaw JW, Tsai SW (2016) Photothermal effects of laser-activated surface plasmonic gold nanoparticles on the apoptosis and osteogenesis of osteoblast-like cells. Int J Nanomed 11:3461–3473. https://doi.org/10.2147/IJN.S108152

    Article  CAS  Google Scholar 

  141. Yanagi T, Kajiya H, Kawaguchi M, Kido H, Fukushima T (2015) Photothermal stress triggered by near infrared-irradiated carbon nanotubes promotes bone deposition in rat calvarial defects. J Biomater Appl 29:1109–1118. https://doi.org/10.1177/0885328214556913

    Article  CAS  Google Scholar 

  142. Huang JJ, Liu G, Song CY, Saiz E, Tomsia AP (2012) Role of molecular chemistry of degradable phema hydrogels in three-dimensional biomimetic mineralization. Chem Mater 24:1331–1337. https://doi.org/10.1021/cm203764f

    Article  CAS  Google Scholar 

  143. Masuyama A, Shindoh A, Ono D, Okahara M (1989) Preparation and surface active properties of terminal amide type of alcohol ethoxylates. J Am Oil Chem Soc 66:834–837. https://doi.org/10.1007/BF02653680

    Article  CAS  Google Scholar 

  144. Cheng RY, Xin TW, Liu LL, Wang F, Ye TJ, Deng LF (2020) Cui WG (2020) A “three-in-one” injectable hydrogels platform with osteogenesis, angiogenesis and antibacterial for guiding bone regeneration. Appl Mater Today 20:100763. https://doi.org/10.1016/j.apmt.2020.100763

    Article  Google Scholar 

  145. Ma YF, Lin M, Huang GY, Li YH, Wang SQ, Bai GQ, Lu TJ, Xu F (2018) Spatiotemporal mechanical microenvironment: a hydrogels-based platform for guiding stem cell fate. Adv Mater 30:1705911. https://doi.org/10.1002/adma.201705911

    Article  CAS  Google Scholar 

  146. Tong ZR, Jin LL, Oliveira JM, Reis RL, Zhong Q, Mao ZW, Gao CY (2021) Adaptable hydrogels with reversible linkages for regenerative medicine: Dynamic mechanical microenvironment for cells. Bioact Mater 6:1375–1387. https://doi.org/10.1016/j.bioactmat.2020.10.029

    Article  CAS  Google Scholar 

  147. Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4:518–524

    Article  CAS  Google Scholar 

  148. Tayalia P, Mooney DJ (2010) Controlled, Growth factor delivery for tissue engineering. Adv Mater 21:3269–3285. https://doi.org/10.1002/adma.200900241

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (NSFC No. 52063006) and the Science and Technology Foundation of Guizhou Province (Grant Number 2019-112-016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzhu Xiong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Y., Xiong, Y. Applications of bone regeneration hydrogels in the treatment of bone defects: a review. J Mater Sci 57, 887–913 (2022). https://doi.org/10.1007/s10853-021-06675-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06675-7

Navigation