Skip to main content

Advertisement

Log in

Structure–property correlation in a novel ZrB2–SiC ultrahigh-temperature ceramic composite with Al-alloy sinter additive

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, the effect of minor (5 vol.%) addition of Al–10Si–0.2Mg (composition in wt.%) pre-alloyed powder on densification, microstructure and mechanical behaviour of spark plasma-sintered ZrB2-20 vol.% SiC composite has been investigated. The sintered composite records a relative density of 99.83% despite being processed at a relatively low temperature (1700 °C) in argon atmosphere. Interestingly, ZrB2–20SiC–5AlSiMg composite does not undergo any shape distortion though the liquidus temperature of this metallic alloy additive is quite low (~ 592 °C). Extensive phase and microstructure analyses by appropriate techniques indicate that no free or unreacted AlSiMg is detected in the sintered composite. Thermodynamic analysis suggests that AlSiMg serves as a reducing agent for ZrO2 oxide scale and forms respective high-melting oxide phases. Raman analysis confirms that incorporation of 5 vol.% AlSiMg enhances residual compressive stress of SiC grains. Furthermore, the addition of AlSiMg is found to enhance the thermal shock resistance of the composite. In brief, this new AlSiMg additive results in better densification (99.83%) and hence an attractive combination of useful mechanical properties like Vickers microhardness (17.63 ± 0.54 GPa), nano-hardness (18.62 ± 1.23 GPa), indentation fracture toughness (7.21 ± 1.13 MPa \(\sqrt {\text{m}}\)), elastic modulus (432.64 ± 32.90 GPa) and flexural strength (659.25 ± 32.40 MPa) in the AlSiMg-added ZrB2-20SiC composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Fahrenholtz WG, Hilmas GE (2017) Ultra-high temperature ceramics: materials for extreme environments. Scr Mater 129:94–99. https://doi.org/10.1016/j.scriptamat.2016.10.018

    Article  CAS  Google Scholar 

  2. Watts J, Hilmas G, Fahrenholtz WG (2011) Mechanical characterization of ZrB2-SiC composites with varying SiC particle sizes. J Am Ceram Soc 94:4410–4418. https://doi.org/10.1111/j.1551-2916.2011.04885.x

    Article  CAS  Google Scholar 

  3. Fahrenholtz WG, Hilmas GE, Chamberlain AL et al (2004) Processing and characterization of ZrB2-based ultra-high temperature monolithic and fibrous monolithic ceramics. J Mater Sci 39:5951–5957. https://doi.org/10.1023/B:JMSC.0000041691.41116.bf

    Article  CAS  Google Scholar 

  4. Justin JF, Jankowiak A (2011) Ultra High Temperature Ceramics: Densification, Properties and Thermal Stability. AerospaceLab J 3:AL3-08

  5. Zapata-Solvas E, Jayaseelan DD, Lin HT et al (2013) Mechanical properties of ZrB2- and HfB2-based ultra-high temperature ceramics fabricated by spark plasma sintering. J Eur Ceram Soc 33:1373–1386. https://doi.org/10.1016/j.jeurceramsoc.2012.12.009

    Article  CAS  Google Scholar 

  6. Ariharan S, Sengupta P, Nisar A et al (2017) Dual-layer oxidation-protective plasma-sprayed SiC-ZrB2/Al2O3-carbon nanotube coating on graphite. J Therm Spray Technol 26:417–431. https://doi.org/10.1007/s11666-016-0508-3

    Article  CAS  Google Scholar 

  7. Zapata-Solvas E, Gómez-García D, Domínguez-Rodríguez A, Lee WE (2018) High temperature creep of 20 vol%. SiC-HfB2 UHTCs up to 2000 °C and the effect of La2O3 addition. J Eur Ceram Soc 38:47–56. https://doi.org/10.1016/j.jeurceramsoc.2017.08.028

    Article  CAS  Google Scholar 

  8. Guo S (2018) Effects of VC additives on densification and elastic and mechanical properties of hot-pressed ZrB2–SiC composites. J Mater Sci 53:4010–4021. https://doi.org/10.1007/s10853-017-1850-7

    Article  CAS  Google Scholar 

  9. Monteverde F, Bellosi A, Scatteia L (2008) Processing and properties of ultra-high temperature ceramics for space applications. Mater Sci Eng A 485:415–421. https://doi.org/10.1016/j.msea.2007.08.054

    Article  CAS  Google Scholar 

  10. Sengupta P, Manna I (2019) Advanced high-temperature structural materials for aerospace and power sectors: a critical review. Trans Indian Inst Met 72:2043–2059. https://doi.org/10.1007/s12666-019-01598-z

    Article  Google Scholar 

  11. Monteverde F, Guicciardi S, Bellosi A (2003) Advances in microstructure and mechanical properties of zirconium diboride-based ceramics. Mater Sci Eng A 346:310–319

    Article  Google Scholar 

  12. Zou J, Zhang GJ, Hu CF et al (2012) Strong ZrB 2- SiC: WC ceramics at 1600°C. J Am Ceram Soc 95:874–878. https://doi.org/10.1111/j.1551-2916.2011.05062.x

    Article  CAS  Google Scholar 

  13. Snyder A, Quach D, Groza JR et al (2011) Spark Plasma Sintering of ZrB2-SiC-ZrC ultra-high temperature ceramics at 1800°C. Mater Sci Eng A 528:6079–6082. https://doi.org/10.1016/j.msea.2011.04.026

    Article  CAS  Google Scholar 

  14. Chamberlain AL, Fahrenholtz WG, Hilmas GE, Ellerby DT (2004) High-strength zirconium diboride-based ceramics. Scr Mater 87:1170–1172. https://doi.org/10.1111/j.1551-2916.2004.01170.x

    Article  CAS  Google Scholar 

  15. Sha JJ, Zhang ZF, Di SX et al (2017) Microstructure and mechanical properties of ZrB2-based ceramic composites with nano-sized SiC particles synthesized by in-situ reaction. Mater Sci Eng A 693:145–150. https://doi.org/10.1016/j.msea.2017.03.088

    Article  CAS  Google Scholar 

  16. Snyder A, Bo Z, Hodson S et al (2012) The effect of heating rate and composition on the properties of spark plasma sintered zirconium diboride based composites. Mater Sci Eng A 538:98–102. https://doi.org/10.1016/j.msea.2012.01.019

    Article  CAS  Google Scholar 

  17. Zhang SC, Hilmas GE, Fahrenholtz WG (2008) Pressureless sintering of ZrB2-SiC ceramics. J Am Ceram Soc 91:26–32. https://doi.org/10.1111/j.1551-2916.2007.02006.x

    Article  CAS  Google Scholar 

  18. Silvestroni L, Kleebe HJ, Fahrenholtz WG, Watts J (2017) Super-strong materials for temperatures exceeding 2000 °C. Sci Rep 7:1–8. https://doi.org/10.1038/srep40730

    Article  CAS  Google Scholar 

  19. Mallik M, Ray KK, Mitra R (2014) Effect of Si3N4 addition on compressive creep behavior of hot-pressed ZrB2-SiC composites. J Am Ceram Soc 97:2957–2964. https://doi.org/10.1111/jace.13022

    Article  CAS  Google Scholar 

  20. Yan X, Jin X, Li P et al (2019) Microstructures and mechanical properties of ZrB2–SiC–Ni ceramic composites prepared by spark plasma sintering. Ceram Int 45:16707–16712. https://doi.org/10.1016/j.ceramint.2019.05.151

    Article  CAS  Google Scholar 

  21. Ghasali E, Shahedi Asl M (2018) Microstructural development during spark plasma sintering of ZrB2–SiC–Ti composite. Ceram Int 44:18078–18083. https://doi.org/10.1016/j.ceramint.2018.07.011

    Article  CAS  Google Scholar 

  22. Inoue R, Arai Y, Kubota Y et al (2018) Oxidation of ZrB2 and its composites: a review. J Mater Sci 53:14885–14906. https://doi.org/10.1007/s10853-018-2601-0

    Article  CAS  Google Scholar 

  23. Lin J, Huang Y, Zhang H et al (2015) Densification and properties of ZrO2 fiber toughed ZrB2-SiC ceramics via spark plasma sintering. Mater Sci Eng A 644:204–209. https://doi.org/10.1016/j.msea.2015.07.073

    Article  CAS  Google Scholar 

  24. Mohammadpour B, Ahmadi Z, Shokouhimehr M, Shahedi Asl M (2019) Spark plasma sintering of Al-doped ZrB2–SiC composite. Ceram Int 45:4262–4267. https://doi.org/10.1016/j.ceramint.2018.11.098

    Article  CAS  Google Scholar 

  25. Purwar A, Mukherjee R, Ravikumar K et al (2016) Development of ZrB2–SiC–Ti by multi stage spark plasma sintering at 1600°C. J Ceram Soc Japan 124:393–402. https://doi.org/10.2109/jcersj2.15260

    Article  CAS  Google Scholar 

  26. Nayebi B, Ahmadi Z, Shahedi Asl M et al (2019) Influence of vanadium content on the characteristics of spark plasma sintered ZrB2–SiC–V composites. J Alloys Compd 805:725–732. https://doi.org/10.1016/j.jallcom.2019.07.117

    Article  CAS  Google Scholar 

  27. Opila E, Levine S, Lorincz J (2004) Oxidation of ZrB2- And HfB2-based ultra-high temperature ceramics: effect of Ta additions. J Mater Sci 39:5969–5977. https://doi.org/10.1023/B:JMSC.0000041693.32531.d1

    Article  CAS  Google Scholar 

  28. Zhang SC, Hilmas GE, Fahrenholtz WG (2006) Pressureless densification of zirconium diboride with boron carbide additions. J Am Ceram Soc 89:1544–1550. https://doi.org/10.1111/j.1551-2916.2006.00949.x

    Article  CAS  Google Scholar 

  29. Golla BR, Mukhopadhyay A, Basu B, Thimmappaa SK (2020) Review on ultra-high temperature boride ceramic. Prog Mater Sci 111:1–73

    Article  Google Scholar 

  30. Sonber JK, Murthy TSRC, Sairam K et al (2018) ZrB2 based novel composite with NiAl as reinforcement phase. Int J Refract Met Hard Mater 70:56–65. https://doi.org/10.1016/j.ijrmhm.2017.09.013

    Article  CAS  Google Scholar 

  31. Murray JL, McAlister AJ (1984) The Al-Si (Aluminum-Silicon) system. Bull Alloy Phase Diagrams 5:74–84. https://doi.org/10.1007/BF02868729

    Article  CAS  Google Scholar 

  32. Anstis GR, Chantikul P, Lawn BR, Marshall DB (1981) A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. J Am Ceram Soc 64:533–538. https://doi.org/10.1111/j.1151-2916.1981.tb10320.x

    Article  CAS  Google Scholar 

  33. Sciti D, Guicciardi S, Nygren M (2008) Densification and mechanical behavior of HfC and HfB2 fabricated by spark plasma sintering. J Am Ceram Soc 91:1433–1440. https://doi.org/10.1111/j.1551-2916.2007.02248.x

    Article  CAS  Google Scholar 

  34. Yue C, Liu W, Zhang L et al (2013) Fracture toughness and toughening mechanisms in a (ZrB2-SiC) composite reinforced with boron nitride nanotubes and boron nitride nanoplatelets. Scr Mater 68:579–582. https://doi.org/10.1016/j.scriptamat.2012.12.005

    Article  CAS  Google Scholar 

  35. Shackelford JF, Han Y-H, Kim S, Kwon S-H (2016) CRC Materials Science and Engineering Handbook, 4th edn. CRC Press, Taylor & Francis Group

    Book  Google Scholar 

  36. Hitzler L, Janousch C, Schanz J et al (2016) Nondestructive evaluation of AlSi10Mg prismatic samples generated by Selective Laser Melting: influence of manufacturing conditions. Mater Sci Eng Technol 47:564–581

    CAS  Google Scholar 

  37. Callister WD, Rethwisch DG (2013) Callister’s Materials Science and Engineering (Adapted by R. Balasubramaniam), Second. Wiley

    Google Scholar 

  38. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583. https://doi.org/10.1557/jmr.1992.1564

    Article  CAS  Google Scholar 

  39. Schuh CA (2006) Nanoindentation studies of materials. Mater Today 9:32–40. https://doi.org/10.1016/S1369-7021(06)71495-X

    Article  CAS  Google Scholar 

  40. Chamberlain AL, Fahrenholtz WG, Hilmas GE, Ellerby DT (2004) High strength ZrB2-based ceramics. J Am Ceram Soc 87:1170–1172

    Article  CAS  Google Scholar 

  41. Fahrenholtz WG (2007) Thermodynamic analysis of ZrB2-SiC oxidation: formation of a SiC-depleted region. J Am Ceram Soc 90:143–148. https://doi.org/10.1111/j.1551-2916.2006.01329.x

    Article  CAS  Google Scholar 

  42. Silvestroni L, Stricker K, Sciti D, Kleebe HJ (2018) Understanding the oxidation behavior of a ZrB2–MoSi2 composite at ultra-high temperatures. Acta Mater 151:216–228. https://doi.org/10.1016/j.actamat.2018.03.042

    Article  CAS  Google Scholar 

  43. Cullity BD (1956) Elements of X-ray diffraction. Addisin-Wesley Publishing Company, INC., Notre Dame, Indiana

    Google Scholar 

  44. Xu Y, Yamazaki M, Villars P (2011) Inorganic materials database for exploring the nature of material. Jpn J Appl Phys 50:11RH02: 1-5 

    Article  Google Scholar 

  45. Cheng EJ, Li Y, Sakamoto J et al (2017) Mechanical properties of individual phases of ZrB2-ZrC eutectic composite measured by nanoindentation. J Eur Ceram Soc 37:4223–4227. https://doi.org/10.1016/j.jeurceramsoc.2017.05.031

    Article  CAS  Google Scholar 

  46. Shahedi M, Nayebi B, Motallebzadeh A (2019) Nanoindentation and nanostructural characterization of ZrB2–SiC composite doped with graphite nano-flakes. Compos Part B 175:107153:1-8. https://doi.org/10.1016/j.compositesb.2019.107153

  47. Sengupta P, Sahoo SS, Bhattacherjee A et al (2020) Effect of TiC addition on structure and properties of spark plasma sintered ZrB2–SiC–TiC ultrahigh temperature ceramic composite. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2020.156668

    Article  Google Scholar 

  48. Nayebi B, Parvin N, Shahedi Asl M et al (2021) Nanostructural and nanoindentation characterization of ZrB2 ceramics toughened with in-situ synthesized ZrC. Int J Refract Met Hard Mater 94:105391:1-14. https://doi.org/10.1016/j.ijrmhm.2020.105391

  49. Csanádi T, Kovalčíková A, Dusza J et al (2017) Slip activation controlled nanohardness anisotropy of ZrB2 ceramic grains. Acta Mater 140:452–464. https://doi.org/10.1016/j.actamat.2017.08.061

    Article  CAS  Google Scholar 

  50. Nisar A, Balani K (2017) Phase and microstructural correlation of spark plasma sintered HfB2-ZrB2 based ultra-high temperature ceramic composites. Coatings 7:110. https://doi.org/10.3390/coatings7080110

    Article  CAS  Google Scholar 

  51. Guzmán de Villoria R, Miravete A (2007) Mechanical model to evaluate the effect of the dispersion in nanocomposites. Acta Mater 55:3025–3031. https://doi.org/10.1016/j.actamat.2007.01.007

    Article  CAS  Google Scholar 

  52. Kempen K, Thijs L, Van Humbeeck J, Kruth JP (2012) Mechanical properties of AlSi10Mg produced by Selective Laser Melting. Phys Procedia 39:439–446. https://doi.org/10.1016/j.phpro.2012.10.059

    Article  CAS  Google Scholar 

  53. Cutler RA (1991) Engineering Properties of Borides in Ceramics and Glasses: Engineered Materials Handbook, vol 4. ASM International, Materials Park, OH

    Google Scholar 

  54. Choren JA, Heinrich SM, Silver-Thorn MB (2013) Young’s modulus and volume porosity relationships for additive manufacturing applications. J Mater Sci 48:5103–5112. https://doi.org/10.1007/s10853-013-7237-5

    Article  CAS  Google Scholar 

  55. Hlavac J (1982) Melting temperatures of refractory oxides: part I. Pure Appl Chem 54:681–688

    Article  Google Scholar 

  56. Sengupta P, Bhattacharjee A, Maiti HS (2019) Zirconia: a unique multifunctional ceramic material. Trans Indian Inst Met 72:1981–1998. https://doi.org/10.1007/s12666-019-01742-9

    Article  CAS  Google Scholar 

  57. Yuan F, Huang L (2012) α-β transformation and disorder in β-cristobalite silica. Phys Rev B - Condens Matter Mater Phys. https://doi.org/10.1103/PhysRevB.85.134114

    Article  Google Scholar 

  58. Madden GI, VanVlack LH (1967) Transformation of Quartz to Tridymite in the Presence of Binary Silicate Liquids. J Am Ceram Soc 50:414–418

    Article  CAS  Google Scholar 

  59. Jain A, Ong SP, Hautier G, et al (2013) The Materials Project: A materials genome approach to accelerating materials innovation

  60. Zimmermann JW, Hilmas GE, Fahrenholtz WG (2008) Thermal shock resistance of ZrB2 and ZrB2-30% SiC. Mater Chem Phys 112:140–145. https://doi.org/10.1016/j.matchemphys.2008.05.048

    Article  CAS  Google Scholar 

  61. Zhang XH, Wang Z, Hu P et al (2009) Mechanical properties and thermal shock resistance of ZrB2-SiC ceramic toughened with graphite flake and SiC whiskers. Scr Mater 61:809–812. https://doi.org/10.1016/j.scriptamat.2009.07.001

    Article  CAS  Google Scholar 

  62. Zhi W, Qiang Q, Zhanjun W, Guodong S (2011) The thermal shock resistance of the ZrB2-SiC-ZrC ceramic. Mater Des 32:3499–3503. https://doi.org/10.1016/j.matdes.2011.02.056

    Article  CAS  Google Scholar 

  63. Wang Z, Hong C, Zhang X et al (2009) Microstructure and thermal shock behavior of ZrB2-SiC-graphite composite. Mater Chem Phys 113:338–341. https://doi.org/10.1016/j.matchemphys.2008.07.095

    Article  CAS  Google Scholar 

  64. Watts J, Hilmas G, Fahrenholtz WG et al (2011) Measurement of thermal residual stresses in ZrB2-SiC composites. J Eur Ceram Soc 31:1811–1820. https://doi.org/10.1016/j.jeurceramsoc.2011.03.024

    Article  CAS  Google Scholar 

  65. Ghosh D, Subhash G, Orlovskaya N (2008) Measurement of scratch-induced residual stress within SiC grains in ZrB2–SiC composite using micro-Raman spectroscopy. Acta Mater 56:5345–5354. https://doi.org/10.1016/j.actamat.2008.07.031

    Article  CAS  Google Scholar 

  66. Jin XC, Sun YL, Hou C et al (2019) Investigation into cooling-rate dependent residual stresses in ZrB2–SiC composites using improved Raman spectroscopy method. Ceram Int 45:22564–22570. https://doi.org/10.1016/j.ceramint.2019.07.285

    Article  CAS  Google Scholar 

  67. Stadelmann R, Hughes B, Orlovskaya N et al (2015) 2D Raman mapping and thermal residual stresses in SiC grains of ZrB2-SiC ceramic composites. Ceram Int 41:13630–13637. https://doi.org/10.1016/j.ceramint.2015.07.161

    Article  CAS  Google Scholar 

  68. Watts J, Hilmas G, Fahrenholtz WG et al (2010) Stress measurements in ZrB2-SiC composites using Raman spectroscopy and neutron diffraction. J Eur Ceram Soc 30:2165–2171. https://doi.org/10.1016/j.jeurceramsoc.2010.02.014

    Article  CAS  Google Scholar 

  69. Fahrenholtz WG, Hilmas GE, Talmy IG, Zaykoski JA (2007) Refractory diborides of zirconium and hafnium. J Am Ceram Soc 90:1347–1364. https://doi.org/10.1111/j.1551-2916.2007.01583.x

    Article  CAS  Google Scholar 

  70. Pierson HO (1996) Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing, and Application. Noyes Publications, New Jersey, USA

    Google Scholar 

  71. Gumbleton R, Cuenca JA, Klemencic GM et al (2019) Evaluating the coefficient of thermal expansion of additive manufactured AlSi10Mg using microwave techniques. Addit Manuf 30:100841. https://doi.org/10.1016/j.addma.2019.100841

    Article  CAS  Google Scholar 

  72. Shackelford JF, Alexander W (2001) Materials Science and Engineering Handbook, 3rd editio. CRC Press

    Google Scholar 

  73. Liu J, Vohra YK (1994) Raman modes of 6H polytype of silicon carbide to ultrahigh pressures: A comparison with silicon and diamond. Phys Rev Lett 72:4105–4108. https://doi.org/10.1103/PhysRevLett.72.4105

    Article  CAS  Google Scholar 

  74. Wang HL, Hon MH (1999) Temperature dependence of ceramics hardness. Ceram Int 25:267–271. https://doi.org/10.1016/S0272-8842(98)00035-2

    Article  CAS  Google Scholar 

  75. Guo Q, Luo S, Gan J et al (2015) Effect of ball milled Zr/Al/ZrB2 composite powders on microstructure and toughening of ZrB2-SiC/Zr-Al-C composite ceramics sintered by spark plasma sintering. Mater Sci Eng A 644:96–104. https://doi.org/10.1016/j.msea.2015.07.010

    Article  CAS  Google Scholar 

  76. Sun X, Han W, Hu P et al (2010) Microstructure and mechanical properties of ZrB2-Nb composite. Int J Refract Met Hard Mater 28:472–474. https://doi.org/10.1016/j.ijrmhm.2009.12.005

    Article  CAS  Google Scholar 

  77. Liu HL, Zhang GJ, Liu JX, Wu H (2015) Synergetic roles of ZrC and SiC in ternary ZrB2-SiC-ZrC ceramics. J Eur Ceram Soc 35:4389–4397. https://doi.org/10.1016/j.jeurceramsoc.2015.08.024

    Article  CAS  Google Scholar 

  78. Liu HL, Liu JX, Liu HT, Zhang GJ (2015) Contour maps of mechanical properties in ternary ZrB2SiCZrC ceramic system. Scr Mater 107:140–144. https://doi.org/10.1016/j.scriptamat.2015.06.005

    Article  CAS  Google Scholar 

  79. Zou J, Bin MH, D’Angio A, Zhang GJ (2018) Tungsten carbide: a versatile additive to get trace alkaline-earth oxide impurities out of ZrB2 based ceramics. Scr Mater 147:40–44. https://doi.org/10.1016/j.scriptamat.2017.12.033

    Article  CAS  Google Scholar 

  80. Yadhukulakrishnan GB, Rahman A, Karumuri S et al (2012) Spark plasma sintering of silicon carbide and multi-walled carbon nanotube reinforced zirconium diboride ceramic composite. Mater Sci Eng A 552:125–133. https://doi.org/10.1016/j.msea.2012.05.020

    Article  CAS  Google Scholar 

  81. Wang H, Chen D, Wang CA et al (2009) Preparation and characterization of high-toughness ZrB2/Mo composites by hot-pressing process. Int J Refract Met Hard Mater 27:1024–1026. https://doi.org/10.1016/j.ijrmhm.2009.06.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

P. Sengupta would like to acknowledge CSIR-IMMT Bhubaneswar for providing financial support for this work through “OLP-76” project. I. Manna gratefully acknowledges partial financial support from DST sponsored projects ‘JCP’ (SR/S2/JCB-16/2012, Dt. 16.10.17) and ‘DGL’ (DST/TSG/AMT/2015/636/G, Dt. 18-06-2018), MHRD sponsored project ‘LSL_SKI’ (SPARC/2018-19/P723/SL, Dt. 31.05.19) and ISRO funded project ‘ONC’ (IIT/SRIC/MT/ONC/2018-19/057, Dt. 09.07.2018). Assistance from Mr. Nigamananda Ray, CSIR-IMMT Bhubaneswar is acknowledged for conducting thermodynamic analysis using the HSC Chemistry software.

Author information

Authors and Affiliations

Authors

Contributions

PS performed conceptualization, experimental design, measurements and manuscript writing. SB was involved in funding acquisition, administrative support and project supervision. IM contributed to conceptualization, experimental design, research supervision and manuscript writing.

Corresponding author

Correspondence to I. Manna.

Ethics declarations

Conflict of interest

Authors declare no conflict of interests.

Additional information

Handling Editor: N. Ravishankar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sengupta, P., Basu, S. & Manna, I. Structure–property correlation in a novel ZrB2–SiC ultrahigh-temperature ceramic composite with Al-alloy sinter additive. J Mater Sci 56, 19029–19046 (2021). https://doi.org/10.1007/s10853-021-06427-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06427-7

Navigation