Skip to main content

Advertisement

Log in

Zirconia: A Unique Multifunctional Ceramic Material

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Zirconia ceramics possess the unique combination of multi-functionality. There have been a number of landmark discoveries in the areas of its mechanical, electrical and thermal properties. The material is known to have a number of polymorphs like monoclinic at room temperature, tetragonal normally above around 1170 °C and cubic above around 2300 °C. The high-temperature cubic phase can be stabilized at room temperature by forming a solid solution with di-, tri- or tetravalent metal oxides. Its fracture toughness can be enhanced significantly by taking advantage of the stress-induced polymorphic transformation. Partially stabilized zirconia is known to have the highest toughness among all the monolithic ceramic materials. The addition of zirconia to other ceramics like alumina also toughens the ceramic composite. Stabilization of zirconia to its cubic form generates very large amount of oxygen ion vacancy, thereby enhancing the oxygen diffusivity and oxygen ion conductivity, which makes this material one of the most important solid-state high-temperature electrolytes suitable for electrochemical devices like solid oxide fuel cell, oxygen sensor and oxygen pump. Low thermal conductivity of the material makes it useful as thermal barrier coating for gas turbine blades in order to increase the operating temperature and therefore the efficiency of the turbines. High mechanical strength and high toughness together with excellent resistant to toxicity have made it emerge as a new material for biomedical prosthesis, particularly dental implants. Reinforcing with carbon nano-tube or graphene oxide enhances the mechanical properties and changes the nature of electrical conduction significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

[Reproduced with permission of the publisher of Ref. 23]

Fig. 2
Fig. 3

[Reproduced with permission of the publisher of Ref. 34]

Fig. 4

[Reproduced with permission of the publisher of Ref. [62]

Fig. 5

[Reproduced with permission of the publisher of Ref. 23]

Fig. 6

[Reproduced with permission of the publisher of Ref. 23]

Fig. 7

[Reproduced with permission of the publisher of Ref. 62]

Fig. 8

[Reproduced with permission of the publisher of Ref. 23]

Fig. 9

[Reproduced with permission of the publisher of Ref. 87]

Fig. 10

[Reproduced with permission of the publisher of Ref. 105]

Fig. 11

[Reproduced with permission of the publisher of Ref. 113]

Fig. 12

Similar content being viewed by others

References

  1. Choudhary C B, Maiti H S, and Subbarao E C, in Solid Electrolytes and Their Applications, (ed) Subbarao E C, Plenum Press, New York (1980), p 1.

  2. Subbarao E C, and Maiti H S, Solid State Ion 11 (1984) 317.

    Google Scholar 

  3. Subbarao E C, Maiti H S, and Srivastava K K, Phys Stat Solidi 21(1974) 9.

    Google Scholar 

  4. Garvie R, Hannink R H, and Pascoe R T, Nature 258 (1975) 703.

    Google Scholar 

  5. Cao X Q, Vassenb R, and Stoever D, J Eur Ceram Soc 24 (2004) 1.

    Google Scholar 

  6. Srikanth V, Subbarao E C, Agrawal D K, Huang C Y, and Roy R, J Am Ceram Soc 74 (1991) 365.

    Google Scholar 

  7. Wagner C, Naturwissenschaften, 31 (1943) 265.

    Google Scholar 

  8. Kiukola K, and Wagner C, J Electrochem Soc 104 (1957) 379.

    Google Scholar 

  9. Kingery W D Jr, Pappis J, Doty M E, and Hill D C, J Am Ceram Soc 42 (1959) 393.

    Google Scholar 

  10. Heuer A H, and Hobbs LW, (eds) Science and Technology of Zirconia-I (Advances in Ceramics), American Ceramic Society (1981).

  11. Rühle M, Heuer A H, and Claussen N, (eds) Science and Technology of Zirconia-II (Advances in Ceramics), American Ceramic Society (1984).

  12. Somiya S, Yamamoto N, and Yanagida H, (eds) Science and Technology of Zirconia-III (Advances in Ceramics), American Ceramic Society (1988).

  13. Meriani S, and Palmonari C, (eds) Zirconia-88 (Advances in Zirconia Science and Technology), Europian Ceramic Society (1989).

  14. Badwal S P S, Bannister M J, and Hannink R H J, (eds) Science and Technology of ZirconiaV, CRC Press (1993).

  15. Subbarao E C, Adv Ceram 3 (1981) 1.

    Google Scholar 

  16. Tien T Y, and Subbarao E C, J Chem Phys 39 (1963) 1014.

    Google Scholar 

  17. Tien T Y, and Subbarao E C, J Am. Ceram. Soc. 46 (1963) 489.

    Google Scholar 

  18. Adam J, and Rogers M D, Acta Cryst 12 (1959) 951.

    Google Scholar 

  19. Smith D K, and Newkirk H W, Acta Cryst 18 (1965) 983.

    Google Scholar 

  20. Ruff O, and Ebert F, Z Anorg Ch 180 (1929) 19.

    Google Scholar 

  21. Teufer G, Acta Cryst 15 (1962) 1187.

    Google Scholar 

  22. Liao Y, ZrO 2-Practical Electron Microscopy and Data Base-An online book, http://www.globalsino.com/EM/.

  23. Hannink R H J, Kelly P M, and Muddle B C, J Am Ceram Soc 87 (2000) 461.

    Google Scholar 

  24. Kelly J R, Denry I, Dent Mater 24 (2008) 289.

    Google Scholar 

  25. Kelly P M, and Ball C J, J Am Ceram Soc 69 (1986) 259.

    Google Scholar 

  26. Kelly P M, Wauchope C J, Key Eng Mater 153–154 (1998) 97.

    Google Scholar 

  27. Kelly P M, Rose L R F, Prog Mater Sci 47 (2002) 463.

    Google Scholar 

  28. Zhang Y L, Jin X J, Rong Y H, Hsu T Y, Jiang D Y, and Shi J L, Acta Mater 54 (2006) 1289.

    Google Scholar 

  29. Jin X J, Curr Opin Solid State Mater Sci 9 (2005) 313.

    Google Scholar 

  30. Becher P F, Acta Metall 34 (1986) 1885.

    Google Scholar 

  31. Zhang Y L, Jin X J, and Hsu T Y, J Eur Ceram Soc 23 (2003) 685.

    Google Scholar 

  32. Baun W L, Science 140 (1963) 1330.

    Google Scholar 

  33. Wolten G M, J Am Ceram Soc 46 (1963) 418.

    Google Scholar 

  34. Patil R N, and Subbarao E C, Acta Crystallogr Sect A 26 (1970) 535.

    Google Scholar 

  35. Patil R N, and Subbarao E C, J Appl Crystallogr 2 (1969) 281.

    Google Scholar 

  36. Maiti H S, Gokhale K V G K, Subbarao E C, J Am Ceram Soc 55 (1972) 317.

    Google Scholar 

  37. Fehrenbacher L L, and Jacobson L A, J Am Ceram Soc 48 (1965) 157.

    Google Scholar 

  38. Ruh R, Garrett H J, Domagala R F, and Tallan N M, J Am Ceram Soc 51 (1968) 23.

    Google Scholar 

  39. Vest R W, and Tallan N M. J Am Ceram Soc 48 (1965) 472.

    Google Scholar 

  40. Wolten G M, J Am Chem Soc 80 (1958) 4772.

    Google Scholar 

  41. Tien T Y, J Am Ceram Soc 47 (1964) 430.

    Google Scholar 

  42. Garvie R C, J Phys Chem 69 (1965) 1238.

    Google Scholar 

  43. Djurado E, Bouvier P, and Lucazeau G, J Solid State Chem 149 (2000) 399.

    Google Scholar 

  44. Chevalier J, Gremillard L, Virkar A V, and Clarke D R, J Am Ceram Soc 92 (2009) 1901.

    Google Scholar 

  45. Evans A G, and Heuer A H, J Am Ceram Soc 63 (1980) 241.

    Google Scholar 

  46. Bansal G K, and Heuer A H, Acta Metall 20 (1972) 1281.

    Google Scholar 

  47. Yoshimura M, Am Ceram Soc Bull 67 (1988) 1950.

    Google Scholar 

  48. Chevalier J, Cales B, and Drouin J M, J Am Ceram Soc 82 (1999) 2150.

    Google Scholar 

  49. Scott H G, J Mater Sci 10 (1975) 1527.

    Google Scholar 

  50. Sheu T S, TienT Y, and Chen I W, J Am Ceram Soc 75 (1992) 1108.

    Google Scholar 

  51. Weber B C, Technical Report ARL 64-205, Aerospace Research Laboratories, U.S.A.F. (1964)—reproduced in refs. 3 and 34.

  52. Evans A G, J Am Ceram Soc 73 (1990) 187.

    Google Scholar 

  53. Kisi E H, and Howard C J, Key Eng Mater 153154 (1998) 1.

    Google Scholar 

  54. Shukla S, and Seal S, Int Mater Rev 50 (2005) 45.

    Google Scholar 

  55. Mazdiyasni K S, Lynch C T, and Smith J S, J Am Ceram Soc 49 (1966) 286.

    Google Scholar 

  56. Mcmeeking R M, Evans A G, J Am Ceram Soc 65 (1981) 242.

    Google Scholar 

  57. Lange F F, J Mater Sci 17 (1982) 240.

    Google Scholar 

  58. Lange F F, J Mater Sci 17 (1982) 225.

    Google Scholar 

  59. Porter D L, and Heuer A H, J Am Ceram Soc 60 (1977) 183.

    Google Scholar 

  60. Budiansky B, Hutchinson J W, and Lambropoulos J C, Int J Solids Struct 19 (1983) 337.

    Google Scholar 

  61. Eichler J, Eisele U, and Rodel J, J Am Ceram Soc 87 (2004) 1401.

    Google Scholar 

  62. Basu B, Int Mater Rev 50 (2005) 239.

    Google Scholar 

  63. Ruhle M, and Evans A G, Prog Mater Sci 33 (1989) 85.

    Google Scholar 

  64. Li P, Chen I -W, and Penner-Hahn J, J Am Ceram Soc 77 (1994) 118.

  65. Li P, Chen I -W, and Penner-Hahn J E, J Am Ceram Soc 77 (1994) 1281.

  66. Li P, Chen I -W, and Penner-Hahn J E, J Am Ceram Soc 77 (1994) 1289.

  67. Hannink R H J, Johnston K A, Pascoe R T, and Garvie R C, in Advanced Ceramics Science Technology Zirconia, American Ceramic Society, Ohio (1990) p. 116.

  68. Garvie R C, Hannink R H J, and Urbani C, Ceramurg Int 8 (1980) 19.

    Google Scholar 

  69. Drennan J, and Hannink R H J, J Am Ceram Soc 69 (1986) 541.

    Google Scholar 

  70. Hughan R R, and Hannink R H J, J Am Ceram Soc 69 (1986) 556.

    Google Scholar 

  71. Farmer S C, Heuer A H, and Hannink R H J E, J Am Ceram Soc 70 (1987) 431.

  72. Hannink R H J, and Garvie R C, J Mater Sci 17 (1982) 2637.

    Google Scholar 

  73. Hannink R H J, J Mater Sci 18 (1983) 457.

    Google Scholar 

  74. Basu B, Vleugels J, and Van Der Biest O, J Mater Res 16 (2001) 2158.

    Google Scholar 

  75. Vleugels J, Yuan Z X, and Van Der Biest O, J Eur Ceram Soc 22 (2002) 873.

    Google Scholar 

  76. Swain M V, J Mater Sci Lett 5 (1986) 1159.

    Google Scholar 

  77. Chung T, Song H, Kim G, and Kim D, J Am Ceram Soc 80 (1997) 2607.

    Google Scholar 

  78. Vasylkiv O, Sakka Y, and Skorokhod V , J Am Ceram Soc 86 (2003) 299.

  79. Basu B, Vleugels J, and Van Der Biest O, Mater SciEng A 380 (2004) 215.

    Google Scholar 

  80. Basu B, Vleugels J, and Van Der Biest O, Mater Sci Eng A 366 (2004) 338.

    Google Scholar 

  81. Hutchinson J W, Acta Metall 35 (1987) 1605.

    Google Scholar 

  82. Heuer A H, and Ruhle M, Acta Metall, 33 (1985) 2101.

  83. Porter D L, and Heuer A H, Adv Ceram 12 (1984) 653.

    Google Scholar 

  84. Rauchs G, Fett T, and Munz D, Eng Fract Mech 69 (2002) 389.

    Google Scholar 

  85. Srinivasan G V, Jue J-F, Kuo S-Y, and Virkar A V, J Am Ceram Soc 72 (1989) 2098.

  86. Chan C, Lunge F F, and Ruhle M, J Am Ceram Soc 74 (1991) 807.

    Google Scholar 

  87. Subbarao E C, and Maiti H S in Proceedings of the Conference on High Temperature Solid Oxide Electrolytes, (ed) Salzano F J, Associated Universities Inc., New York (1983), p 151.

  88. Subbarao E C, Trans Ind Ceram Soc 46 (1987) 65.

    Google Scholar 

  89. Subbarao E C Sutter P H, and Hrizo J, J Am Ceram Soc 48 (1965) 443.

  90. Subbarao E C, Ferroelecrrics 102 (1990) 267.

    Google Scholar 

  91. Kröger F A, and Vink H J, in Solid State Physics, Vol. 3, (eds) Seitz F, and Turnbull D, Academic Press, New York (1956), p. 307.

  92. Brook R J, in Electrical Conductivity in Ceramics and Glass, (ed) Tallan N M, Marcel Dekker, New York (1974), p 179.

  93. Van Gool W, Principles of Defect Chemistry of Crystalline Solids, Academic Press, New York (1966).

    Google Scholar 

  94. Eyring L, and O’Keefe M (eds) The Chemistry of Extended Defects in Non-Metallic Solids, North-Holland, Amsterdam (1970).

    Google Scholar 

  95. Kofstad P, Nonstoichiemetry, Diffusion and Electrical Conductivity in Binary Metal Oxides, Wiley, New York (1972).

    Google Scholar 

  96. Kröger F A, Chemistry of Imperfect Crystals, Vol. 2, North Holland, Amsterdam (1974).

    Google Scholar 

  97. Singhal S C (ed) Proceedings of the First International Symposium on Solid Oxide Fuel Cells, The electrochemical Society Inc. NJ, USA (1989).

  98. Devi P S, Sharma A D, and Maiti H S, Trans Ind Ceram Soc 63 (2004) 75.

  99. Mahato N, Banerjee A, Gupta A, Omar S, and Balani K, Prog Mater Sci 72 (2015) 141.

    Google Scholar 

  100. Chen K, Li N, Ai N, Li M, Cheng Y, Rickard W D A, Li J, and Jiang S P, J Mater Chem A 4 (2016) 17678.

  101. Singh B, Ghosh S, Aich S, and Roy B, J Power Sources 339 (2017) 103.

    Google Scholar 

  102. Zhuiykov S, and Miura N, Sens Actuators B 121 (2007) 639.

    Google Scholar 

  103. Pham A Q, and Glass R S, Electrochim Acta 43 (1998) 2699.

  104. Gunduz S, Dogu D, Deka D J, Meyer K E, Fuller A, Co A C, and Ozkan U S, Catal Today 323 (2019) 3.

    Google Scholar 

  105. Ikeda S, Sakurai O, Uematsu K, Mizutani N, and Kato M, J Mater Sci 20 (1985) 4593.

    Google Scholar 

  106. Catlow C R A, Chadwick A V, Greaves G N, and Moroney L M, Nature 312 (1984) 601.

    Google Scholar 

  107. Catlow C R A, Chadwick A V, Greaves G N, and Moroney L M, J Am Ceram Soc 69 (1986) 131 272.

    Google Scholar 

  108. Roth W L, Wong R, Goldman A I, Canova E, Kao Y H, and Dunn B, Solid State lon 18 & 19 (1986) 1115.

  109. Yugami H, Koike A, and Ishigame M, Phys Rev B 44 (1991) 9214.

    Google Scholar 

  110. Li X, and Hafskjold B, J. Phys. Condens. Matter 7 (1995) 1255.

  111. Yamamura Y, Kawasaki S, and Sakai H, Solid State Ion 126 (1999) 181.

    Google Scholar 

  112. Ahamer C, Opitz A K, Rupp G M, and Fleig J, J Electrochem Soc 164 (2017) F790.

    Google Scholar 

  113. Tuller H L, Solid State Ion 131 (2000) 143.

    Google Scholar 

  114. Bauerle J E, J Phys Chem Solids 30 (1969) 2657.

    Google Scholar 

  115. Benítez-Rico A, García-Sánchez M F, Picquart M, Monroy-Peláez B M, and Santana-Rodríguez G, J Nanomater. (Hindawi) 2015 (2015) 1.

  116. Kosacki I, and Anderson H U, Ionics 6 (2000) 294.

    Google Scholar 

  117. Yamamoto O, Arati Y, Takeda asuo, Imanishi N, Mizutani Y, Kawai M, and Nakamura Y, Solid State Ion 79 (1995) 137.

    Google Scholar 

  118. Xu G, Zhang Y-W, Liao C-S, and Yan C-H, Solid State Ion 166 (2004) 391.

    Google Scholar 

  119. Chakrapani V, Chetan J, Christina C, and Kumar B, J Power Sources 147 (2005) 128.

    Google Scholar 

  120. Okamoto M, Akimune Y, Furuya K, Hatano M, Yamanaka M, and Uchiyama M, Solid State Ion 176 (2005) 675.

    Google Scholar 

  121. Jaisa A A, Muhammed Ali S A, Anwar M, Rao Somalu M, Muchtar A, Roslam W N, Isahak W, Tan C Y, Singh R, and Brandon N P, Ceram Int 43 (2017) 8119.

  122. Robson L G, Reis S L, Muccillo E N S, Ceram Int 43 (2017) 10934.

  123. Souza J P, Grosso R L, Muccillo R, and Muccillo E N S, Mater Lett 229 (2018) 53.

    Google Scholar 

  124. Raghvendra, and Prabhakar S, J Eur Ceram Soc 35 (2015) 1485.

    Google Scholar 

  125. Faryna M, Bobrowski P, Pędzich Z, and Bućko M M, Mater Lett 161 (2015), 352.

    Google Scholar 

  126. Cordier A, El Khal H, Siebert E, and Steil M C, J Eur Ceram Soc 39 (2019) 2518.

    Google Scholar 

  127. Xavier V, Devinder Y, Raj R, and West Anthony R, J Eur Ceram Soc 39 (2019) 1352.

  128. Lughi V, and Clarke D R, Surf Coat Technol 200 (2005) 1287.

    Google Scholar 

  129. Raghavan S, Wang H, Porter W D, Dinwiddie R B, and Mayo M J, Acta Mater 49 (2001) 169.

    Google Scholar 

  130. Sun J, Hu Z, Li J, Zhang H, and Sun C, Ceram Int 40 (2014) 11787.

    Google Scholar 

  131. Brandon J R, and Taylor R, Surf Coat Technol 39 (1989) 143.

    Google Scholar 

  132. Padture N P, Gell M, and Jordan E H, Science 12 (2002) 296.

  133. Liu Y, Vida V, Le Roux S, Blas F, Ansart F, and Lours P, J Eur Ceram Soc 35 (2015) 4269.

    Google Scholar 

  134. Hirvonen A, Nowak R, Yamamoto Y, Sekino T, and Niihara K, J Eur Ceram Soc 26 (2006) 1497.

    Google Scholar 

  135. Nakonieczny D S, Ziębowicz A, Paszenda Z K, and Krawczyk C, Biocybern Biomed Eng 37 (2017) 229.

    Google Scholar 

  136. Sabaliauskas V, Juciute R, Bukelskiene V, Rutkunas V, Trumpaite-Vanagiene R, and Puriene A, Stomatologija 13 (2011) 75.

    Google Scholar 

  137. Wang F, Ph.D. thesis (2011), https://www.escholar.manchester.ac.uk/uk-ac-man-scw:128436.

  138. Roufosse M, and Klemens P G, Phys Rev B 7 (1973) 5379.

    Google Scholar 

  139. Naumann M, Ernst J, Reich S, Weißhaupt P, and Beuer F, Clin Oral Investig 15 (2011) 657.

    Google Scholar 

  140. Federlin M, Männer T, Hiller K A, Schmidt S, and Schmalz G, Clin Oral Investig 10 (2006) 126.

    Google Scholar 

  141. Brackett M G, Lockwood P E, Messer R L W, Lewis J B, Bouillaguet S, and Wataha J C, Dent Mater 24 (2008) 450.

  142. Tsitrou E A, Northeast S E, and van Noort R, J Dent 35 (2007) 68.

    Google Scholar 

  143. Huang X, Zheng X, Zhao G, Zhong B, Zhang X, and Wen G, Mater Chem Phys 143 (2014) 845.

    Google Scholar 

  144. Kelly J R, J Evid Based Dent Pract 11 (2011) 203.

    Google Scholar 

  145. Beuer F, Schweiger J, Eichberger M, Kappert H F, Gernet W, and Edelhoff D, Dent Mater 25 (2009) 121.

    Google Scholar 

  146. Panwar S S, Umasankar P T, Balasubramanian K, and Venkataraman B, Bull MaterSci 39 (2016) 321.

    Google Scholar 

  147. Derelioglu Z, Carabat A L, Song G M, Van der Zwaag S, and Sloof W G, J Eur Ceram Soc 35 (2015) 4507.

  148. Subhasis N, Indranil M, and Jyotsna D M, Ceram Int 41 (2015) 5247.

    Google Scholar 

  149. Liu B, Liu Y, Zhu C, Xiang H, Chen H, Sun L, Gao Y, and Zhou Y, J Mater Sci Technol 35 (2019) 833.

    Google Scholar 

  150. Kirubaharan A M K, Kuppusami P, Chakravarty S, Ramachandran D, and Singh A, J Alloys Compd 722 (2017) 585.

  151. Pilathadka S, Vahalová D, and Vosáhlo T, Prague Med Rep 108 (2007) 5.

    Google Scholar 

  152. Güngör B M, Aydın C, Yılmaz H, Gül E B, J Oral Implantol 40 (2014) 485.

  153. Osman R B, and Swain M V, Materials 8 (2015) 932.

    Google Scholar 

  154. Nakonieczny D S, Ziębowicz A, Paszenda Z K, and Krawczyk C, Biocybern Biomed Eng 37 (2017) 229.

    Google Scholar 

  155. Manicone P F, Iommetti P R, and Raffaelli L, J Dent 35 (2007) 819.

    Google Scholar 

  156. Torricelli P, Verne E, Brovarone C V, Appendino P, Rustichelli F, Krajewski A, Ravaglioli A, Pierini G, Fini M, and Giavaresi G, Biomaterials 22 (2001) 2535.

    Google Scholar 

  157. Dion I, Bordenave L, Lefebvre F, Bareille R, Baquey C, Monties J R, and Havlik P, J Mater Sci Mater Med 5 (1994) 18.

    Google Scholar 

  158. Suárez M J, Lozano J F L, Salido M P, and Martínez F, Int J Prosthodont 17 (2004) 35.

    Google Scholar 

  159. Aboushelib M N, De Jager N, and Kleverlaan C J, Feilzer A J, Dent Mater 21 (2005) 984.

    Google Scholar 

  160. Chen Z, Li Z, Li J, Liu C, Lao C, Fu Y, and Liu C, Li Y, Wang P, and He Y, J Eur Ceram Soc 39 (2019) 661.

    Google Scholar 

  161. Mota Y A, Cotes C, Carvalho R F, Machado J P B, Leite F P P, Souza Rodrigo O A, and Ozccan M, J Biomed Mater Res B Appl Biomater 105B (2017) 1972.

  162. Ramesh S, Sara L KY, and Tan C Y, Ceram Int 44 (2018) 20620.

  163. Ling Y, Nakanishib Y, Alaoa A-R, Song X-F, Abduo J, and Zhang Y, Procedia CIRP 65 (2017) 284.

    Google Scholar 

  164. Schünemann F H, Galárraga-Vinueza M E, Magini R, Fredel M, Silva F, Souza J C M, Yu Z, Henriques B, Mater Sci Eng C 98 (2019) 1294.

  165. Suveen K, Saurabh K, Sachchidanand T, Saurabh S, Manish S, Birendra Kumar Y, Saro K, Toan T T, Ajay Kumar D, Ashok M, Gopal S J, Sagar M, and Dhar M B, Adv Sci 2 (2015) 1500048.

    Google Scholar 

  166. Sinnott S B, and Andrews R, Crit Rev Solid State Mater Sci 26 (2001) 145.

    Google Scholar 

  167. Zhu Y, Murali S, Cai W, Li X, Won S J, Potts J R, and Ruoff R S, Adv Mater 22 (2010) 3906.

  168. Pratyasha M, Siddharth R, Neelima M, and Kantesh B, Metall Mater Trans A, 46A (2015) 2965.

    Google Scholar 

  169. Rodríguez A M, Poyato R, Gutiérrez–Mora F, Muñoz A, Gallardo–López A, Ceram Int 44 (2018) 17716.

    Google Scholar 

  170. Carmen M-F, Ana M-R, Cristina R T, Emilio J-P, Cristina L-P, Rosalía P, and Angela G-L, J Alloys Compd 777 (2019) 213.

    Google Scholar 

  171. Nina O, and Frank K, Ceram Int 44 (2018) 16931.

    Google Scholar 

  172. Kurapovaa O Y, Glumova O V, Lomakina I V, Sergey N G, Mikhail M, Pivovarov K, Julia V, and Konakova V G, Ceram Int 44 (2018) 15464.

  173. Gutiérrez-Mora F, Morales-Rodríguez A, Gallardo-López A, and Poyato R, J Eur Ceram Soc 39 (2019) 1381.

  174. Liu J, Yan H, Reece M J, and Kyle J, J Eur Ceram Soc 32 (2012) 4185.

    Google Scholar 

  175. Rafael C-C, Malmal M B, Diego G-G, Rodrigo M, and Arturo D-R, J Eur Ceram Soc 38 (2018) 3994.

    Google Scholar 

  176. Marinha D, and Manue B, J Eur Ceram Soc 39 (2019) 389.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support provided by their respective organizations in preparing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himadri Sekhar Maiti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Himadri Sekhar Maiti was formerly in CSIR-Central Glass and Ceramic Research Institute, Kolkata, 700032 India

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sengupta, P., Bhattacharjee, A. & Maiti, H.S. Zirconia: A Unique Multifunctional Ceramic Material. Trans Indian Inst Met 72, 1981–1998 (2019). https://doi.org/10.1007/s12666-019-01742-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01742-9

Keywords

Navigation