Skip to main content

Advertisement

Log in

Sandwich-like SnS/N, S co-doped rGO/SnS structure with pseudocapacitance for high-performance Li- and Na–ion batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

SnS is considered as a promising anode candidate for next-generation Li- and Na-ion batteries due to its high theoretical capacity and large interlayer distance, which provides excessive space for intercalation of Li- and Na-ions. However, the low electronic conductivity and large volumetric changes during charge/discharge process lead to its poor rate capability and severe capacity degradation. Herein, a sandwich-like SnS/N, S co-doped rGO/SnS structure is delicately tailored by using selective vulcanization and in situ decomposition processes. The unique sandwich-like SnS/rGO/SnS structure provides open channels for ion storage and ameliorates the electrical conductivity. RGO substrate and chemical bonds between SnS and rGO improves the electronic conductivity and furnishes additional ions/electrons transport routes. Moreover, the co-doping of N and S renders abundant sites for ions adsorption, inducing a strong pseudocapacitance effect and favoring fast electrochemical kinetics. Therefore, at the current density of at 1 A g−1, the sandwich-like SnS/rGO/SnS electrode delivered a high reversible capacity of 797.9 mAh g−1 and 359.2 mAh g−1 as an anode material in Li- and Na-ion batteries, respectively.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Sui D, Xu L, Zhang H, Sun Z, Kan B, Ma Y, Chen Y (2020) A 3D cross-linked graphene-based honeycomb carbon composite with excellent confinement effect of organic cathode material for lithium-ion batteries. Carbon 157:656. https://doi.org/10.1016/j.carbon.2019.10.106

    Article  CAS  Google Scholar 

  2. Cho E, Song K, Park MH, Nam K-W, Kang Y-M (2016) SnS 3D flowers with superb kinetic properties for anodic use in next-generation sodium rechargeable batteries. Small 12:2510. https://doi.org/10.1002/smll.201503168

    Article  CAS  Google Scholar 

  3. Wei Z, Wang L, Zhuo M, Ni W, Wang H, Ma J (2018) Layered tin sulfide and selenide anode materials for Li- and Na-ion batteries. J Mater Chem A 6:12185. https://doi.org/10.1039/c8ta02695e

    Article  CAS  Google Scholar 

  4. Dong Y, Feng Y, Deng J, He P, Ma J (2020) Electrospun Sb2Se3@C nanofibers with excellent lithium storage properties. Chin Chem Lett 31:909. https://doi.org/10.1016/j.cclet.2019.11.039

    Article  CAS  Google Scholar 

  5. Wei Z, Ding B, Dou H, Gascon J, Kong XJ, Xiong Y, Cai B, Zhang R, Zhou Y, Long M, Miao J, Dou Y, Yuan D, Ma J (2019) 2020 roadmap on pore materials for energy and environmental applications. Chin Chem Lett 30:2110. https://doi.org/10.1016/j.cclet.2019.11.022

    Article  CAS  Google Scholar 

  6. Zhang Y, Wang P, Yin Y, Zhang X, Fan L, Zhang N, Sun K (2019) Heterostructured SnS-ZnS@C hollow nanoboxes embedded in graphene for high performance lithium and sodium ion batteries. Chem Eng J 356:1042. https://doi.org/10.1016/j.cej.2018.09.131

    Article  CAS  Google Scholar 

  7. Chen M, Zhang Z, Si L, Wang R, Cai J (2019) Engineering of yolk-double shell cube-like SnS@N-S codoped carbon as a high-performance anode for Li- and Na–Ion batteries. ACS Appl Mater Interfaces 11:35050. https://doi.org/10.1021/acsami.9b14287

    Article  CAS  Google Scholar 

  8. Shi J, Wang Y, Su Q, Cheng F, Kong X, Lin J, Zhu T, Liang S, Pan A (2018) N-S co-doped C@SnS nanoflakes/graphene composite as advanced anode for sodium-ion batteries. Chem Eng J 353:606. https://doi.org/10.1016/j.cej.2018.07.157

    Article  CAS  Google Scholar 

  9. Liu G, Li M, Wu N, Cui L, Huang X, Liu X, Zhao Y, Chen H, Yuan W, Bai Y (2018) Single-crystalline particles: an effective way to ameliorate the intragranular cracking, thermal stability, and capacity fading of the LiNi0.6Co0.2Mn02O.2 electrodes. J Electrochem Soc 165:A3040. https://doi.org/10.1149/2.0491813jes

    Article  CAS  Google Scholar 

  10. Cui J, Yao S, Kim JK (2017) Recent progress in rational design of anode materials for high-performance Na-ion batteries. Energy Storage Mater 7:64. https://doi.org/10.1016/j.ensm.2016.12.005

    Article  Google Scholar 

  11. Yu Z, Li X, Yan B, Xiong D, Yang M, Li D (2017) Rational design of flower-like tin sulfide @ reduced graphene oxide for high performance sodium ion batteries. Mater Res Bull 96:516. https://doi.org/10.1016/j.materresbull.2017.04.048

    Article  CAS  Google Scholar 

  12. Xie F, Zhang L, Gu Q, Chao D, Jaroniec M, Qiao S-Z (2019) Multi-shell hollow structured Sb2S3 for sodium-ion batteries with enhanced energy density. Nano Energy 60:591. https://doi.org/10.1016/j.nanoen.2019.04.008

    Article  CAS  Google Scholar 

  13. Zhu C, Kopold P, Li W, van Aken PA, Maier J, Yu Y (2015) A General strategy to fabricate carbon-coated 3D porous interconnected metal sulfides: case study of SnS/C nanocomposite for high-performance lithium and sodium ion batteries. Adv Sci 2:1500200. https://doi.org/10.1002/advs.201500200

    Article  CAS  Google Scholar 

  14. Li X, Wang H, Zhang W, Feng Y, Ma J (2020) S-doped carbon-coated FeS2/C@C nanorods for potassium storage. Acta Metall Sin (Engl Lett). https://doi.org/10.1007/s40195-020-01050-y

    Article  Google Scholar 

  15. Wu C, Dou SX, Yu Y (2018) The state and challenges of anode materials based on conversion reactions for sodium storage. Small 14:e1703671. https://doi.org/10.1002/smll.201703671

    Article  CAS  Google Scholar 

  16. Zhang H, Zhao H, Khan MA, Zou W, Xu J, Zhang L, Zhang J (2018) Recent progress in advanced electrode materials, separators and electrolytes for lithium batteries. J Mater Chem A 6:20564. https://doi.org/10.1039/c8ta05336g

    Article  CAS  Google Scholar 

  17. Jiang Y, Zou G, Hou H, Li J, Liu C, Qiu X, Ji X (2019) Composition engineering boosts voltage windows for advanced Sodium-Ion batteries. ACS Nano 13:10787. https://doi.org/10.1021/acsnano.9b05614

    Article  CAS  Google Scholar 

  18. Liu G, Cui J, Luo R, Liu Y, Huang X, Wu N, Jin X, Chen H, Tang S, Kim JK, Liu X (2019) 2D MoS2 grown on biomass-based hollow carbon fibers for energy storage. Appl Surf Sci 469:854. https://doi.org/10.1016/j.apsusc.2018.11.067

    Article  CAS  Google Scholar 

  19. Zhao L, Wu HH, Yang C, Zhang Q, Zhong G, Zheng Z, Chen H, Wang J, He K, Wang B, Zhu T, Zeng XC, Liu M, Wang MS (2018) Mechanistic origin of the high performance of Yolk@Shell Bi2S3@N-doped carbon nanowire electrodes. ACS Nano 12:12597. https://doi.org/10.1021/acsnano.8b07319

    Article  CAS  Google Scholar 

  20. Wu J, Lu Z, Li K, Cui J, Yao S, Ihsan-ul Haq M, Li B, Yang QH, Kang F, Ciucci F, Kim JK (2018) Hierarchical MoS2/carbon microspheres as long-life and high-rate anodes for sodium-ion batteries. J Mater Chem A 6:5668. https://doi.org/10.1039/c7ta11119c

    Article  CAS  Google Scholar 

  21. Liu X, Hao Y, Shu J, Sari HMK, Lin L, Kou H, Li J, Liu W, Yan B, Li D, Zhang J, Li X (2019) Nitrogen/sulfur dual-doping of reduced graphene oxide harvesting hollow ZnSnS3 nano-microcubes with superior sodium storage. Nano Energy 57:414. https://doi.org/10.1016/j.nanoen.2018.12.024

    Article  CAS  Google Scholar 

  22. Li Z, Ding J, Mitlin D (2015) Tin and tin compounds for sodium ion battery anodes: phase transformations and performance. Acc Chem Res 48:1657. https://doi.org/10.1021/acs.accounts.5b00114

    Article  CAS  Google Scholar 

  23. Wang Y, Zhang Y, Shi J, Kong X, Cao X, Liang S, Cao G, Pan A (2019) Tin sulfide nanoparticles embedded in sulfur and nitrogen dual-doped mesoporous carbon fibers as high-performance anodes with battery-capacitive sodium storage. Energy Storage Mater 18:366. https://doi.org/10.1016/j.ensm.2018.08.014

    Article  Google Scholar 

  24. Jiang M, Huang Y, Sun W, Zhang X (2019) Co-doped SnS2 nanosheet array for efficient oxygen evolution reaction electrocatalyst. J Mater Sci 54:13715. https://doi.org/10.1007/s10853-019-03856-3

    Article  CAS  Google Scholar 

  25. Lu J, Zhao S, Fan S, Lv Q, Li J, Lv R (2019) Hierarchical SnS/SnS2 heterostructures grown on carbon cloth as binder-free anode for superior sodium-ion storage. Carbon 148:525. https://doi.org/10.1016/j.carbon.2019.03.022

    Article  CAS  Google Scholar 

  26. Liu J, Gu M, Ouyang L, Wang H, Yang L, Zhu M (2016) Sandwich-like SnS/polypyrrole ultrathin nanosheets as high-performance anode materials for Li–Ion batteries. ACS Appl Mater Interfaces 8:8502. https://doi.org/10.1021/acsami.6b00627

    Article  CAS  Google Scholar 

  27. Song NJ, Ma C (2019) The in-situ synthesis of a 3D SnS/N-doped graphene composite with enhanced electrochemical performance as a low-cost anode material in sodium ion batteries. Materials 12:2030. https://doi.org/10.3390/ma12122030

    Article  CAS  Google Scholar 

  28. Zheng Y, Zhou T, Zhang C, Mao J, Liu H, Guo Z (2016) Boosted charge transfer in SnS/SnO2 heterostructures: toward high rate capability for sodium-ion batteries. Angew Chem 55:3408. https://doi.org/10.1002/anie.201510978

    Article  CAS  Google Scholar 

  29. Zhang S, Zhao H, Wang M, Li Z, Mi J (2018) Low crystallinity SnS encapsulated in CNTs decorated and S-doped carbon nanofibers as excellent anode material for sodium-ion batteries. Electrochim Acta 279:186. https://doi.org/10.1016/j.electacta.2018.05.082

    Article  CAS  Google Scholar 

  30. Deng Z, Jiang H, Hu Y, Li C, Liu Y, Liu H (2018) Nanospace-confined synthesis of coconut-like SnS/C nanospheres for high-rate and stable lithium-ion batteries. AICHE J 64:1965. https://doi.org/10.1002/aic.16068

    Article  CAS  Google Scholar 

  31. Hu X, Chen J, Zeng G, Jia J, Cai P, Chai G, Wen Z (2017) Robust 3D macroporous structures with SnS nanoparticles decorating nitrogen-doped carbon nanosheet networks for high performance sodium-ion batteries. J Mater Chem A 5:23460. https://doi.org/10.1039/c7ta08169c

    Article  CAS  Google Scholar 

  32. Xia J, Liu L, Jamil S, Xie J, Yan H, Yuan Y, Zhang Y, Nie S, Pan J, Wang X, Cao G (2019) Free-standing SnS/C nanofiber anodes for ultralong cycle-life lithium-ion batteries and sodium-ion batteries. Energy Storage Mater 17:1. https://doi.org/10.1016/j.ensm.2018.08.005

    Article  Google Scholar 

  33. Zhang Y, Su H, Wang C, Yang D, Li Y, Zhang W, Wang H, Zhang J, Li D (2019) Heterostructured SnS/TiO2@C hollow nanospheres for superior lithium and sodium storage. Nanoscale 11:12846. https://doi.org/10.1039/c9nr04015c

    Article  CAS  Google Scholar 

  34. Ai J, Lei Y, Yang S, Lai C, Xu Q (2019) SnS nanoparticles anchored on Ti3C2 nanosheets matrix via electrostatic attraction method as novel anode for lithium ion batteries. Chem Eng J 357:150. https://doi.org/10.1016/j.cej.2018.09.109

    Article  CAS  Google Scholar 

  35. Wang M, Xu H, Yang Z, Yang H, Peng A, Zhang J, Chen J, Huang Y, Li X, Cao G (2019) SnS nanosheets confined growth by S and N co-doped graphene with enhanced pseudocapacitance for sodium-ion capacitors. ACS Appl Mater Interfaces 11:41363. https://doi.org/10.1021/acsami.9b14098

    Article  CAS  Google Scholar 

  36. Xia J, Jiang K, Xie J, Guo S, Liu L, Zhang Y, Nie S, Yuan Y, Yan H, Wang X (2019) Tin disulfide embedded in N-, S-doped carbon nanofibers as anode material for sodium-ion batteries. Chem Eng J 359:1244. https://doi.org/10.1016/j.cej.2018.11.053

    Article  CAS  Google Scholar 

  37. Ren J, Ren RP, Lv YK (2020) Hollow spheres constructed by ultrathin SnS sheets for enhanced lithium storage. J Mater Sci 55:7492. https://doi.org/10.1007/s10853-020-04540-7

    Article  CAS  Google Scholar 

  38. Luo L, Song J, Song L, Zhang H, Bi Y, Liu L, Yin L, Wang F, Wang G (2019) Flexible conductive anodes based on 3D hierarchical Sn/NS-CNFs@rGO network for sodium-ion batteries. Nano-Micro Lett 11:63. https://doi.org/10.1007/s40820-019-0294-9

    Article  CAS  Google Scholar 

  39. Lu Y, Liang J, Deng S, He Q, Deng S, Hu Y, Wang D (2019) Hypercrosslinked polymers enabled micropore-dominant N, S Co-doped porous carbon for ultrafast electron/ion transport supercapacitors. Nano Energy 65:103993. https://doi.org/10.1016/j.nanoen.2019.103993

    Article  CAS  Google Scholar 

  40. Sheng J, Yang L, Zhu YE, Li F, Zhang Y, Zhou Z (2017) Oriented SnS nanoflakes bound on S-doped N-rich carbon nanosheets with a rapid pseudocapacitive response as high-rate anodes for sodium-ion batteries. J Mater Chem A 5:19745. https://doi.org/10.1039/c7ta06577a

    Article  CAS  Google Scholar 

  41. Jiang Y, Song D, Wu J, Wang Z, Huang S, Xu Y, Chen Z, Zhao B, Zhang J (2019) Sandwich-like SnS2/graphene/SnS2 with expanded interlayer distance as high-rate lithium/sodium-ion battery anode materials. ACS Nano 13:9100. https://doi.org/10.1021/acsnano.9b03330

    Article  CAS  Google Scholar 

  42. Ying H, Xin F, Han W (2016) Structural evolution of 3D Nano-Sn/reduced graphene oxide composite from a sandwich-like structure to a curly Sn@Carbon nanocage-like structure during lithiation/delithiation cycling. Adv Mater Interfaces 3:1600498. https://doi.org/10.1002/admi.201600498

    Article  CAS  Google Scholar 

  43. Wang S, Fang Y, Wang X, Lou XW (2019) Hierarchical microboxes constructed by sns nanoplates coated with nitrogen-doped carbon for efficient sodium storage. Angew Chem Int Ed 58:760. https://doi.org/10.1002/anie.201810729

    Article  CAS  Google Scholar 

  44. Liu J, Wen Y, van Aken PA, Maier J, Yu Y (2015) In situ reduction and coating of SnS2 nanobelts for free-standing SnS@polypyrrole-nanobelt/carbon-nanotube paper electrodes with superior Li–ion storage. J Mater Chem A 3:5259. https://doi.org/10.1039/c5ta00431d

    Article  CAS  Google Scholar 

  45. Naeem R, Ehsan MA, Rehman A, Yamani ZH, Hakeem AS, Mazhar M (2018) Single step aerosol assisted chemical vapor deposition of p–n Sn(ii) oxide–Ti(iv) oxide nanocomposite thin film electrodes for investigation of photoelectrochemical properties. New J Chem 42:5256. https://doi.org/10.1039/c7nj04606e

    Article  CAS  Google Scholar 

  46. Li J, Han L, Li Y, Li J, Zhu G, Zhang X, Lu T, Pan L (2020) MXene-decorated SnS2/Sn3S4 hybrid as anode material for high-rate lithium-ion batteries. Chem Eng J 380:122590. https://doi.org/10.1016/j.cej.2019.122590

    Article  CAS  Google Scholar 

  47. Li S, Qiu J, Lai C, Ling M, Zhao H, Zhang S (2015) Surface capacitive contributions: towards high rate anode materials for sodium ion batteries. Nano Energy 12:224. https://doi.org/10.1016/j.nanoen.2014.12.032

    Article  CAS  Google Scholar 

  48. Liu G, Wu H-H, Meng Q, Zhang T, Sun D, Jin X, Guo D, Wu N, Liu X, Kim JK (2020) Role of anatase/TiO2(B) heterointerface for ultrastable high-rate lithium and sodium energy storage performance. Nanoscale Horiz 5:150. https://doi.org/10.1039/C9NH00402E

    Article  CAS  Google Scholar 

  49. Wu N, Qiao X, Shen J, Liu G, Sun T, Wu H, Hou H, Liu X, Zhang Y, Ji X (2019) Anatase inverse opal TiO2-x@N-doped C induced the dominant pseudocapacitive effect for durable and fast lithium/sodium storage. Electrochim Acta 299:540. https://doi.org/10.1016/j.electacta.2019.01.040

    Article  CAS  Google Scholar 

  50. Guo D, Yang M, Zhang L, Li Y, Wang J, Liu G, Wu N, Kim J-K, Liu X (2019) Cr2O3 nanosheet/carbon cloth anode with strong interaction and fast charge transfer for pseudocapacitive energy storage in lithium-ion batteries. RSC Adv 9:33446. https://doi.org/10.1039/C9RA07465A

    Article  CAS  Google Scholar 

  51. Liang X, Rangom Y, Kwok CY, Pang Q, Nazar LF (2017) Interwoven MXene nanosheet/carbon-nanotube composites as Li-S cathode hosts. Adv Mater 29:1603040. https://doi.org/10.1002/adma.201603040

    Article  CAS  Google Scholar 

  52. Wang X, Yang C, Xiong X, Chen G, Huang M, Wang J-H, Liu Y, Liu M, Huang K (2019) A robust sulfur host with dual lithium polysulfide immobilization mechanism for long cycle life and high capacity Li–S batteries. Energy Storage Mater 16:344. https://doi.org/10.1016/j.ensm.2018.06.015

    Article  Google Scholar 

  53. Guo W, Ding K, Mei S, Li X, Feng X, Guo S, Fu J, Zhang X, Gao B, Huo K, Chu PK (2020) Hollow spheres consisting of SnS nanosheets conformally coated with S-doped carbon for advanced Lithium/Sodium Ion battery anodes. ChemElectroChem. https://doi.org/10.1002/celc.201901923

    Article  Google Scholar 

  54. He P, Fang Y, Yu XY, Lou XWD (2017) Hierarchical nanotubes constructed by carbon-coated ultrathin SnS nanosheets for fast capacitive sodium storage. Angew Chem 56:12202. https://doi.org/10.1002/anie.201706652

    Article  CAS  Google Scholar 

  55. Cui J, Yao S, Lu Z, Huang JQ, Chong WG, Ciucci F, Kim J-K (2018) Revealing pseudocapacitive mechanisms of metal dichalcogenide SnS2/Graphene-CNT aerogels for high-energy Na hybrid capacitors. Adv Energy Mater 8:1702488. https://doi.org/10.1002/aenm.201702488

    Article  CAS  Google Scholar 

  56. Zhao J, Wang G, Hu R, Zhu K, Cheng K, Ye K, Cao D, Fan Z (2019) Ultrasmall-sized SnS nanosheets vertically aligned on carbon microtubes for sodium-ion capacitors with high energy density. J Mater Chem A 7:4047. https://doi.org/10.1039/c9ta00141g

    Article  CAS  Google Scholar 

  57. Wang Y, Zhang D, Wang Y, Zhang Y, Liu X, Zhou W, Kim JK, Luo Y (2019) Self-limiting electrode with double-carbon layers as walls for efficient sodium storage performance. Nanoscale 11:11025. https://doi.org/10.1039/c9nr02449b

    Article  CAS  Google Scholar 

  58. Chao D, Zhu C, Yang P, Xia X, Liu J, Wang J, Fan X, Savilov SV, Lin J, Fan HJ, Shen ZX (2016) Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat Commun 7:12122. https://doi.org/10.1038/ncomms12122

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundations of China [Grant Numbers 51904152 and 51804156]; the Key Science and Technology Program of Henan Province [Grant Numbers 192102210015 and 182102310872]; and the Program for Science & Technology Innovation Talents in Universities of Henan Province [Grant Number 20HASTIT020].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianming Liu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 4032 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Sun, D., Li, X. et al. Sandwich-like SnS/N, S co-doped rGO/SnS structure with pseudocapacitance for high-performance Li- and Na–ion batteries. J Mater Sci 55, 14477–14490 (2020). https://doi.org/10.1007/s10853-020-05056-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05056-w

Navigation