Skip to main content
Log in

Sn4P3/Sn@C-N composites as high-performance anodes for Li-storage

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The Sn4P3 anode of lithium-ion batteries (LIBs) exhibits a high theoretical specific capacity of 1255 mAh g−1, close to three times that of graphite. Nevertheless, Sn4P3 encounters serious volume expansion during cycling and then the electrochemical performance worsens. In addition, the electronic conductivity of Sn4P3 needs to be further improved. Sn4P3/Sn@C-N composites have been successfully prepared via a solid-state route in the work. The presence of N-doped C can effectively prevent the volume expansion and improve the electronic conductivity of Sn4P3. The introduction of Sn active material can provide extra capacity and also enhance the electronic conductivity of Sn4P3. Sn4P3/Sn@C-N-II with a carbon content of 28.8 wt.% shows good electrochemical performance. A total of 415 mAh g−1 is delivered after 300 cycles at 500 mA g−1. After 160 cycles at 100 mA g−1, 695.5 mAh g−1 can still be remained. The constructed unique structure enables Sn4P3/Sn@C-N-II to be a promising anode of LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhan RM, Wang XC, Chen ZH, Seh ZW, Wang L, Sun YM (2021) Promises and challenges of the practical implementation of prelithiation in lithium-ion batteries. Adv Energy Mater 11:2101565–2101584. https://doi.org/10.1002/aenm.202101565

    Article  CAS  Google Scholar 

  2. Duffner F, Kronemeyer N, Tübke J, Leker J, Winter M, Schmuch R (2021) Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat Energy 6:123–134. https://doi.org/10.1038/s41560-020-00748-8

    Article  CAS  Google Scholar 

  3. Masias A, Marcicki J, Paxton WA (2021) Opportunities and challenges of lithium ion batteries in automotive applications. ACS Energy Lett 6:621–630. https://doi.org/10.1021/acsenergylett.0c02584

    Article  CAS  Google Scholar 

  4. Hubble D, Brown DE, Zhao YZ, Fang C, Lau J, McCloskey BD, Liu G (2022) Liquid electrolyte development for low-temperature lithium-ion batteries. Energy Environ Sci 15:550–578. https://doi.org/10.1039/D1EE01789F

    Article  CAS  Google Scholar 

  5. Sun L, Liu YX, Shao R, Wu J, Jiang RY, Jin Z (2022) Recent progress and future perspective on practical silicon anode-based lithium ion batteries. Energy Storage Materials 46:482–502. https://doi.org/10.1016/j.ensm.2022.01.042

    Article  Google Scholar 

  6. Nzereogu PU, Omah AD, Ezema FI, Iwuoha EI, Nwanya AC (2022) Anode materials for lithium-ion batteries: a review. Applied Surface Science Advances 9:100233–100252. https://doi.org/10.1016/j.apsadv.2022.100233

    Article  Google Scholar 

  7. Liu J, Sun W, Ran YZ, Zhou SY, Zhang LF, Wu AM, Huang H, Yao M (2021) Progressive lithiation mechanism of Sn4P3 nanosheets as anodes for Li-ion batteries. Appl Surf Sci 550:149247–149256. https://doi.org/10.1016/j.apsusc.2021.149247

    Article  CAS  Google Scholar 

  8. Zhang YX, Sun L, Zhao XX, Wu L, Wang K, Si HC, Gu JL, Sun C, Shi Y, Zhang YH (2020) Construction of Sn-P-Graphene microstructure with Sn-C and P-C co-bonding as anodes for lithium-ion battery. Chem Commun 56:10572–10575. https://doi.org/10.1039/D0CC04817H

    Article  CAS  Google Scholar 

  9. Qi J, Zhang JQ, Liu JW, Ouyang LZ, Wang H, Yang LC, Hu RZ (2022) Few layered graphene wrapped Sn4P3 with high initial coulombic efficiency and cyclic stability for reversible Li+ storage. J Alloy Compd 899:163198–163207. https://doi.org/10.1016/j.jallcom.2021.163198

    Article  CAS  Google Scholar 

  10. Hu C, Hu YJ, Chen AP, Duan XZ, Jiang H, Li CZ (2022) Atomic interface catalytically synthesizing SnP/CoP hetero-nanocrystals with-in dual-carbon hybrids for ultrafast lithium-ion batteries. Engineering. https://doi.org/10.1016/j.eng.2021.11.026

    Article  Google Scholar 

  11. Choi J, Kim W-S, Kim K-H, Hong S-H (2018) Sn4P3-C nanospheres as high capacitive and ultra-stable anodes for sodium ion and lithium ion batteries. J Mater Chem A 6:17437–17443. https://doi.org/10.1039/C8TA05586F

    Article  CAS  Google Scholar 

  12. Sun ST, Li RH, Wang WH, Mu DY, Liu JC, Chen TR, Tian S, Zhu WM, Dai CS (2020) One-dimension coaxial cable-like MWCNTs/Sn4P3@C as anode materials with long-term durability for lithium ion batteries. Inorg Chem Front 7:2651–2659. https://doi.org/10.1039/D0QI00373E

    Article  CAS  Google Scholar 

  13. Liu Q, Ye JJ, Chen ZZ, Hao Q, Xu CX, Hou JG (2019) Double conductivity-improved porous Sn/Sn4P3@carbon nanocomposite as high performance anode in Lithium-ion batteries. J Colloid Interface Sci 537:588–596. https://doi.org/10.1016/j.jcis.2018.11.060

    Article  CAS  Google Scholar 

  14. Liu SL, Zhang HH, Xu LQ, Ma LB, Hou X (2016) High lithium storage performance of Mn-doped Sn4P3 nanoparticles. Electrochim Acta 210:888–896. https://doi.org/10.1016/j.electacta.2016.06.015

    Article  CAS  Google Scholar 

  15. Zhu RY, Wang ZH, Hu XJ, Liu XJ, Wang H (2021) Silicon in hollow carbon nanospheres assembled microspheres cross-linked with N-doped carbon fibers toward a binder free, high performance, and flexible anode for lithium-ion batteries. Adv Func Mater 31:2101487–2101498. https://doi.org/10.1002/adfm.202101487

    Article  CAS  Google Scholar 

  16. Ma YC, Huang AM, Li Y, Jiang HC, Zhang W, Zhang L, Li LL, Peng SJ (2022) Simple preparation of Si/N-doped carbon anodes from photovoltaic industry waste for lithium-ion batteries. J Alloy Compd 890:161792–161800. https://doi.org/10.1016/j.jallcom.2021.161792

    Article  CAS  Google Scholar 

  17. Zhang KY, Du WZ, Qian Z, Lin LD, Gu X, Yang J, Qian YT (2021) SiOx embedded in N-doped carbon nanoslices: a scalable synthesis of high-performance anode material for lithium-ion batteries. Carbon 178:202–210. https://doi.org/10.1016/j.carbon.2021.03.011

    Article  CAS  Google Scholar 

  18. Ding SK, Cheng W, Zhang LM, Du GH, Hao XD, Nie GJ, Xu BS, Zhang M, Su QM, Serra CA (2021) Organic molecule confinement reaction for preparation of the Sn nanoparticles@graphene anode materials in lithium-ion battery. J Colloid Interface Sci 589:308–317. https://doi.org/10.1016/j.jcis.2020.12.086

    Article  CAS  Google Scholar 

  19. Tian MY, Ben LB, Jin Z, Ji HX, Yu HL, Zhao WW, Huang XJ (2021) Excellent low-temperature electrochemical cycling of an anode consisting of Si nanoparticles seeded in Sn nanowires for lithium-ion batteries. Electrochim Acta 396:139224–139232. https://doi.org/10.1016/j.electacta.2021.139224

    Article  CAS  Google Scholar 

  20. Li R, Nie SQ, Miao C, Xin Y, Mou HY, Xu GL, Xiao W (2022) Heterostructural Sn/SnO2 microcube powders coated by a nitrogen-doped carbon layer as good-performance anode materials for lithium ion batteries. J Colloid Interface Sci 606:1042–1054. https://doi.org/10.1016/j.jcis.2021.08.112

    Article  CAS  Google Scholar 

  21. Ran LB, Gentle I, Lin TG, Luo B, Mo N, Rana M, Li M, Wang LZ, Knibbe R (2020) Sn4P3@porous carbon nanofiber as a self-supported anode for sodium-ion batteries. J Power Sources 461:228116–228123. https://doi.org/10.1016/j.jpowsour.2020.228116

    Article  CAS  Google Scholar 

  22. Pan EZ, Jin YH, Zhao CC, Jia M, Chang QQ, Jia MQ, Wang L, He XM (2019) Conformal hollow carbon sphere coated on Sn4P3 microspheres as high-rate and cycle-stable anode materials with superior sodium storage capability. ACS Appl Energy Mater 2:1756–1764. https://doi.org/10.1021/acsaem.8b01885

    Article  CAS  Google Scholar 

  23. Guo Q, Ru Q, Liu Y, Yan HL, Wang B, Hou XH (2018) One-step fabrication of carbon nanotubes-decorated Sn4P3 as a 3D porous intertwined scaffold for lithium ion batteries. Chem Electro Chem 5:2150–2156. https://doi.org/10.1002/celc.201800430

    Article  CAS  Google Scholar 

  24. Ran LB, Luo B, Gentle IR, Lin TG, Sun Q, Li M, Rana MM, Wang LZ, Knibbe R (2020) Biomimetic Sn4P3 anchored on carbon nanotubes as an anode for high-performance sodium-ion batteries. ACS Nano 14:8826–8837. https://doi.org/10.1021/acsnano.0c03432

    Article  CAS  Google Scholar 

  25. Ma LB, Yan PJ, Wu SK, Zhu GY, Shen YL (2017) Engineering tin phosphides@carbon yolk-shell nanocube structures as a highly stable anode material for sodium-ion batteries. Journal of Materials Chemistry A 5:16994–17000. https://doi.org/10.1039/C7TA04900E

    Article  CAS  Google Scholar 

  26. Xu YL, Peng B, Mulder FM (2018) A high-rate and ultrastable sodium ion anode based on a novel Sn4P3-P@graphene nanocomposite. Adv Energy Mater 8:1701847–1701853. https://doi.org/10.1002/aenm.201701847

    Article  CAS  Google Scholar 

  27. Jiang Y, Wang YY, Jiang JL, Liu S, Li WR, Huang SS, Chen ZW, Zhao B (2019) In-situ solvothermal phosphorization from nano-sized tetragonal-Sn to rhombohedral-Sn4P3 embedded in hollow graphene sphere with high capacity and stability. Electrochim Acta 312:263–271. https://doi.org/10.1016/j.electacta.2019.04.037

    Article  CAS  Google Scholar 

  28. Pan EZ, Jin YH, Zhao CC, Jia M, Chang QQ, Jia MQ (2018) Dopamine-derived N-doped carbon encapsulating hollow Sn4P3 microspheres as anode materials with superior sodium storage performance. J Alloy Compd 769:45–52. https://doi.org/10.1016/j.jallcom.2018.07.361

    Article  CAS  Google Scholar 

  29. Wei MH, Wang YR, Li C, Jin C, Sui J, Yang RZ, PPy-derived sandwich-structured hollow carbon fiber anchoring Sn4P3 as anode materials with improved Na+ storage. Chem Nano Mat 5: 1471–1476. https://doi.org/10.1002/cnma.201900445

  30. Kim Y-U, Lee S-Il, Lee CK, Sohn H-J, (2005) Enhancement of capacity and cycle-life of Sn4+δP3 (0≤δ≤1) anode for lithium secondary batteries. J Power Sources 141:163–166. https://doi.org/10.1016/j.jpowsour.2004.09.007

    Article  CAS  Google Scholar 

  31. Park G, Lee C, Lee J, Choi JH, Lee Y-S, Lee S-M, Effect of Fe substitution on electrochemical properties of Sn3.95Fe0.05P3 alloy anode for lithium ion batteries. J Alloys Comp 588: 534–539. https://doi.org/10.1016/j.jallcom.2013.11.082

  32. Ding YJ, Li Z-F, Timofeeva EV, Segre CU (2017) In situ EXAFS-derived mechanism of highly reversible tin phosphide/graphite composite anode for Li-ion batteries. Adv Energy Mater 8:1702134–1702141. https://doi.org/10.1002/aenm.201702134

    Article  CAS  Google Scholar 

  33. Liu SL, Zhang HZ, Xu LQ, Ma LB (2016) Synthesis of hollow spherical tin phosphides (Sn4P3) and their high adsorptive and electrochemical performance. J Cryst Growth 438:31–37. https://doi.org/10.1016/j.jcrysgro.2015.12.018

    Article  CAS  Google Scholar 

  34. Liu SL, Zhang HZ, Xu LQ, Ma LB, Chen XX (2016) Solvothermal preparation of tin phosphide as a long-life anode for advanced lithium and sodium ion batteries. J Power Sources 304:346–353. https://doi.org/10.1016/j.jpowsour.2015.11.056

    Article  CAS  Google Scholar 

  35. Liu ZF, Chen J, Fan XL, Pan Y, Li Y, Ma L, Zhai HZ, Xu LM (2021) Easy encapsulation of Sn4P3 nanoparticles into honeycomb-like nitrogen-doped carbon matrix with enhanced electrochemical performance for Li-ion batteries. J Alloy Compd 871:159531–159531. https://doi.org/10.1016/j.jallcom.2021.159531

    Article  CAS  Google Scholar 

Download references

Funding

The work is supported by the National Natural Science Foundation of China (U1504532), the Liaoning Province Project Education Fund (LJKZ0408 and L2019043), the LiaoNing Revitalization Talents Program (XLYC1907025), and the Natural Science Foundation of Liaoning Shihua University (2018XJJ-012).

The authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Contributions

Zhaohui Meng: data curation, writing—review and editing and supervision. Suhong Wang: formal analysis and data curation. Lianjing Feng: conceptualization, methodology, investigation, data curation, and writing the original draft. Huanhuan Liu: formal analysis, data curation, and validation. Lijuan Wang: funding acquisition, project administration, resources, supervision, and writing—review and editing.

Corresponding authors

Correspondence to Zhaohui Meng or Lijuan Wang.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 796 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Z., Wang, S., Feng, L. et al. Sn4P3/Sn@C-N composites as high-performance anodes for Li-storage. Ionics 29, 105–117 (2023). https://doi.org/10.1007/s11581-022-04808-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04808-9

Keywords

Navigation