Skip to main content
Log in

Defect-induced asymmetry of local hysteresis loops on BiFeO3 surfaces

  • Ferroelectrics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Local piezoresponse hysteresis loops were systematically studied on the surface of ferroelectric thin films of BiFeO3 grown on SrRuO3 and La0.7Sr0.3MnO3 electrodes and compared between ultrahigh vacuum and ambient environment. The loops on all the samples exhibited characteristic asymmetry manifested in the difference of the piezoresponse slope following local domain nucleation. Spatially resolved mapping has revealed that the asymmetry is strongly correlated with the random-field disorder inherent in the films and is not affected by the random-bond disorder component. The asymmetry thus originates from electrostatic disorder within the film, which allows using it as a unique signature of single defects or defect clusters. The electrostatic effects due to the measurement environment also contribute to the total asymmetry of the piezoresponse loop, albeit with a much smaller magnitude compared to local defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tsymbal EY, Kohlstedt H (2006) Science 313:181

    Article  CAS  Google Scholar 

  2. Scott JF (2007) Science 315:954

    Article  CAS  Google Scholar 

  3. Maksymovych P, Jesse S, Yu P, Ramesh R, Baddorf AP, Kalinin SV (2009) Science 324:1421

    Article  CAS  Google Scholar 

  4. Gajek M, Bibes M, Fusil S, Bouzehouane K, Fontcuberta J, Barthélémy A, Fert A (2007) Nat Mater 6:296

    Article  CAS  Google Scholar 

  5. Cheong S-W, Mostovoy M (2007) Nat Mater 6:13

    Article  CAS  Google Scholar 

  6. Ramesh R, Spaldin NA (2007) Nat Mater 6:21

    Article  CAS  Google Scholar 

  7. Kalinin SV et al (2008) Mater Today 11:16

    Article  CAS  Google Scholar 

  8. Paruch P, Giamarchi T, Triscone J-M (2007) Topics Appl Phys 105:339

    Article  CAS  Google Scholar 

  9. Damjanovic D (1998) Rep Prog Phys 61:1267

    Article  CAS  Google Scholar 

  10. Tagantsev AK (1996) Ferroelectrics 184:79

    Article  CAS  Google Scholar 

  11. Ahluwalia R, Gao W (2000) Phys Rev B 63:012103

    Article  Google Scholar 

  12. Kleemann W (2006) J Mater Sci 41:129. doi:https://doi.org/10.1007/s10853-005-5954-0

    Article  CAS  Google Scholar 

  13. Morozovska AN, Kalinin SV, Eliseev EA, Svechnikov SV (2007) Ferroelectrics 354:198

    Article  CAS  Google Scholar 

  14. Gruverman A. J Mater Sci. doi:https://doi.org/10.1007/s10853-009-3623-4

    Article  CAS  Google Scholar 

  15. Gruverman A, Wu D, Scott JF (2008) Phys Rev Lett 100:097601

    Article  CAS  Google Scholar 

  16. Jo JY, Yang SM, Kim TH, Lee HN, Yoon J-G, Park S, Yo J, Jung MH, Noh TW (2009) Phys Rev Lett 102:045701

    Article  CAS  Google Scholar 

  17. Maksymovych P, Jesse S, Huijben M, Ramesh R, Morozovska A, Baddorf AP, Kalinin SV, Maksymovych P, Jesse S, Huijben M, Ramesh R, Morozovska A, Baddorf AP, Kalinin SV et al (2009) Phys Rev Lett 102:017601

    Article  Google Scholar 

  18. Kalinin SV et al (2008) Phys Rev Lett 100:155703

    Article  CAS  Google Scholar 

  19. Jesse S et al (2008) Nat Mater 7:209

    Article  CAS  Google Scholar 

  20. Rodriguez BJ et al (2009) Adv Funct Mater 19:1

    Article  Google Scholar 

  21. Jesse S, Maksymovych P, Kalinin SV (2008) Appl Phys Lett 93:112903

    Article  Google Scholar 

  22. Zavaliche F, Das RR, Kim DM, Eom CB, Yang SY, Shafer P, Ramesh R (2005) Appl Phys Lett 87:182912

    Article  Google Scholar 

  23. Tagantsev AK, Gerra G (2006) J Appl Phys 100:015607

    Article  Google Scholar 

  24. Fong DD, Kolpak AM, Eastman JA, Streiffer SK, Fuoss PH, Stephenson GB, Thomposon C, Kim DM, Choi KJ, Eom CB, Grinberg I, Rappe AM (2006) Phys Rev Lett 96:127601

    Article  CAS  Google Scholar 

  25. Sze SM (1997) Modern semiconductor device physics. Wiley-Interscience

  26. Stengel M, Vanderbilt D, Spaldin NA (2009) Nat Mater 8:392

    Article  CAS  Google Scholar 

  27. Karapetian E, Sevostianov I, Kachanov K (2000) Philos Mag B 80:4

    Article  Google Scholar 

  28. Morozovska AN et al (2008) Phys Rev B 78:054101

    Article  Google Scholar 

Download references

Acknowledgements

The research of PM was performed as a Eugene P. Wigner Fellow and staff member at the Oak Ridge National Laboratory. The experiments were conducted at the Center for Nanophase Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Maksymovych.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maksymovych, P., Balke, N., Jesse, S. et al. Defect-induced asymmetry of local hysteresis loops on BiFeO3 surfaces. J Mater Sci 44, 5095–5101 (2009). https://doi.org/10.1007/s10853-009-3697-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3697-z

Keywords

Navigation