Skip to main content
Log in

Nanoscale mechanical probing of ferroic materials

  • Review - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Mechanical probing, that is using the mechanical force of an atomic force microscopy (AFM) tip for materials’ characterization, has provided a plethora of research opportunities in ferroic materials over the past years. Unique mechanical force-based AFM modes with compatible techniques allow for the study of rather scarcely explored nanoscale phenomena and functionalities in ferroic materials. The key aspect of this involves force interactions, as a main stimulus to enable exploration of mechanically induced novel functionalities closely associated with elastic properties. Mechanical force imposed by an AFM tip at the nanoscale also offers a unique pathway to dynamically control structural phase transitions and ferroic states such as an electric polarization, magnetization, and strain with their associated functionalities from charge dynamics to electrical conduction. Here, we provide a comprehensive overview of nanoscale mechanical probing in ferroic materials with the recent trends and give an outlook on future research opportunities for technological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N.A. Spaldin et al., Science 309, 391–392 (2005)

    Article  Google Scholar 

  2. M. Fiebig et al., Nat. Rev. Mater. 1, 16046 (2016)

    Article  ADS  Google Scholar 

  3. J. Seidel et al., Adv. Electron. Mater. 2, 1500292 (2016)

    Article  Google Scholar 

  4. T. Lottermoser et al., Phys. Sci. Rev. 6, 20200032 (2021)

  5. M. Bibes et al., Nat. Mater. 7, 425–426 (2008)

    Article  ADS  Google Scholar 

  6. V. Garcia et al., Science 327, 1106–1110 (2010)

    Article  ADS  Google Scholar 

  7. Y.-H. Chu et al., Nat. Mater. 7, 478–482 (2008)

    Article  ADS  Google Scholar 

  8. N.A. Spaldin et al., Nat. Mater. 18, 203–212 (2019)

    Article  Google Scholar 

  9. Y. Heo et al., Adv. Mater. 26, 7568–7572 (2014)

    Article  Google Scholar 

  10. S. Hu et al., Phys. Status Solidi (A) 214, 1600356 (2017)

    Article  ADS  Google Scholar 

  11. A. Alsubaie et al., ACS Appl. Mater. Interfaces 10, 11768–11775 (2018)

    Article  Google Scholar 

  12. H. Lu et al., Science 336, 59–61 (2012)

    Article  ADS  Google Scholar 

  13. P. Sharma et al., Adv. Mater. Interfaces 3, 1600033 (2016)

    Article  Google Scholar 

  14. S.B. Aksu et al., Rev. Sci. Instrum. 78, 043704 (2007)

  15. H.J. Butt et al., Nanotechnology 6, 1 (1995)

    Article  ADS  Google Scholar 

  16. D.A. Walters et al., Rev. Sci. Instrum. 67, 3583–3590 (1996)

    Article  ADS  Google Scholar 

  17. L.-O. Heim et al., Langmuir 20, 2760–2764 (2004)

    Article  Google Scholar 

  18. Y.-J. Li et al., Adv. Funct. Mater. 25, 3405–3413 (2015)

    Article  Google Scholar 

  19. B. Pittenger et al., Quantitative mechanical property mapping at the nanoscale with PeakForce QNM. 128, 1–12 (2010)

  20. P. Maksymovych et al., Science 324, 1421–1425 (2009)

    Article  ADS  Google Scholar 

  21. U. Rabe et al., Appl. Phys. Lett. 64, 1493–1495 (1994)

    Article  ADS  Google Scholar 

  22. U. Rabe, Applied Scanning Probe Methods II: Scanning Probe Microscopy Techniques (Springer, Berlin Heidelberg, 2006), pp.37–90

    Book  Google Scholar 

  23. B. Bhushan et al., Applied Scanning Probe Methods XI: Scanning Probe Microscopy Techniques (Springer, Berlin Heidelberg, 2010)

    Google Scholar 

  24. K.Y. Kazushi Yamanaka et al., Jpn. J. Appl. Phys. 35, 3787 (1996)

    Article  ADS  Google Scholar 

  25. K. Yamanaka et al., Appl. Phys. Lett. 64, 178–180 (1994)

    Article  ADS  Google Scholar 

  26. B.D. Huey, Annu. Rev. Mater. Res. 37, 351–385 (2007)

    Article  ADS  Google Scholar 

  27. M.T. Cuberes et al., J. Phys. D Appl. Phys. 33, 2347 (2000)

    Article  ADS  Google Scholar 

  28. Y. Li et al., Npj Comput. Mater. 4, 49 (2018)

    Article  ADS  Google Scholar 

  29. B.J. Rodriguez et al., Nanotechnology 18, 475504 (2007)

    Article  Google Scholar 

  30. R. Proksch, Scanning Probe Microscopy of Functional Materials: Nanoscale Imaging and Spectroscopy (Springer, New York, 2011), pp.125–151

    Google Scholar 

  31. B. Huang et al., Natl. Sci. 6, 55–63 (2018)

    Google Scholar 

  32. D.C. Hurley, Scanning Probe Microscopy of Functional Materials: Nanoscale Imaging and Spectroscopy (Springer, New York, 2011), pp.95–124

    Google Scholar 

  33. Q. Zhu et al., J. Mech. Phys. Solids 126, 76–86 (2019)

    Article  ADS  Google Scholar 

  34. Y. Heo et al., ACS Nano 11, 2805–2813 (2017)

    Article  Google Scholar 

  35. Y. Heo et al., J. Mater. Chem. C (2019). https://www.bruker-nano.jp/library/57e489500c201abd043451c7/57fde6004e5256d4724aeba7.pdf

  36. D.C. Hurley, Applied Scanning Probe Methods XI: Scanning Probe Microscopy Techniques (Springer, Berlin Heidelberg, 2009), pp.97–138

    Book  Google Scholar 

  37. D. Passeri et al., Appl. Phys. Lett. 88, 121910 (2006)

  38. J. Shin et al., J. Vac. Sci. Technol. B 23, 2102–2108 (2005)

    Article  Google Scholar 

  39. K. Yamanaka et al., Appl. Phys. A 66, S313–S317 (1998)

    Article  Google Scholar 

  40. S.M. Park et al., Nat. Nanotechnol. 13, 366–370 (2018)

    Article  ADS  Google Scholar 

  41. Y. Wang et al., Adv. Funct. Mater. 33, 2213787 (2023)

    Article  Google Scholar 

  42. S. Hong et al., Proc. Natl. Acad. Sci. U.S.A. 111, 6566–6569 (2014)

    Article  ADS  Google Scholar 

  43. S. Tong et al., ACS Nano 10, 2568–2574 (2016)

    Article  Google Scholar 

  44. J.G.M. Guy et al., Adv. Mater. 33, 2008068 (2021)

    Article  ADS  Google Scholar 

  45. S. Cho et al., Nat. Commun. 15, 387 (2024)

    Article  ADS  Google Scholar 

  46. S.L. Shang et al., Phys. Rev. B 80, 052102 (2009)

    Article  ADS  Google Scholar 

  47. M. Kahn, J. Am. Ceram. Soc. 68, 623–628 (1985)

    Article  Google Scholar 

  48. P. Sharma et al., Adv. Electron. Mater. 2, 1600283 (2016)

    Article  Google Scholar 

  49. P. Sharma et al., Sci. Rep. 6, 32347 (2016)

    Article  ADS  Google Scholar 

  50. T. Jia et al., NPG Asia Mater. 9, e349–e349 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the INHA UNIVERSITY Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yooun Heo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heo, Y. Nanoscale mechanical probing of ferroic materials. J. Korean Phys. Soc. 84, 661–671 (2024). https://doi.org/10.1007/s40042-024-01034-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-024-01034-6

Keywords

Navigation