Skip to main content
Log in

Micro-encapsulation of citral using edible γ-cyclodextrin metal organic framework

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Stabilization of reactive organic species by encapsulation in self-assembly supramolecules is a popular technique. Citral, a common antimicrobial and flavor compound, is highly sensitive to oxidation, especially when exposed to elevated temperature and light. In this study we evaluated the encapsulation efficiency of citral in cyclodextrin-metal organic framework (CDMOF) to prevent oxidation, provide chemical stability, and control the release of citral for various industrial applications including packaging. Computational simulations indicated the formation of stable inclusion complex between CDMOF and citral with binding energy of the IC approximately − 3.89 kcal mol−1. We observed around 11.83% w/w inclusion of citral in CDMOF as measured using TGA. Host–guest interactions between CDMOF and citral were further elucidated using FTIR, DSC, and SEM. Encapsulation of CDMOF in citral offers higher temperature stability, and extended-release kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nagarajan, V., Kizhaeral, S.S., Subramanian, M., Rajendran, S., Ranjan, J.: Encapsulation of a volatile biomolecule (hexanal) in cyclodextrin metal–organic frameworks for slow release and its effect on preservation of mangoes. ACS Food Sci. Technol. 1(10), 1936–1944 (2021)

    Article  CAS  Google Scholar 

  2. Sultana, A., Kathuria, A., Gaikwad, K.K.: Metal–organic frameworks for active food packaging: a review. Environ. Chem. Lett. 20, 1479–1495 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kathuria, A., Abiad, M.G., Auras, R.: Deterioration of metal–organic framework crystal structure during fabrication of poly (l-lactic acid) mixed-matrix membranes. Polym. Int. 62(8), 1144–1151 (2013)

    Article  CAS  Google Scholar 

  4. Chopra, S., Dhumal, S., Abeli, P., Beaudry, R., Almenar, E.: Metal-organic frameworks have utility in adsorption and release of ethylene and 1-methylcyclopropene in fresh produce packaging. Postharvest Biol. Technol. 130, 48–55 (2017)

    Article  CAS  Google Scholar 

  5. Han, Y., Liu, W., Huang, J., Qiu, S., Zhong, H., Liu, D., Liu, J.: Cyclodextrin-based metal-organic frameworks (CD-MOFs) in pharmaceutics and biomedicine. Pharmaceutics 10(4), 271 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Farmer, E.E., Davoine, C.: Reactive electrophile species. Curr. Opin. Plant Biol. 10(4), 380–386 (2007)

    Article  CAS  PubMed  Google Scholar 

  7. LoPachin, R.M., Gavin, T.: Molecular mechanisms of aldehyde toxicity: a chemical perspective. Chem. Res. Toxicol. 27(7), 1081–1091 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lehtonen, M., Kekäläinen, S., Nikkilä, I., Kilpeläinen, P., Tenkanen, M., Mikkonen, K.S.: Active food packaging through controlled in situ production and release of hexanal. Food Chem. 5, 100074 (2020)

    CAS  Google Scholar 

  9. Bertacche, V., Lorenzi, N., Nava, D., Pini, E., Sinico, C.: Host–guest interaction study of resveratrol with natural and modified cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 55, 279–287 (2006)

    Article  CAS  Google Scholar 

  10. Galan, A., Ballester, P.: Stabilization of reactive species by supramolecular encapsulation. Chem. Soc. Rev. 45(6), 1720–1737 (2016)

    Article  CAS  PubMed  Google Scholar 

  11. Silva, C.D., Guterres, S.S., Weisheimer, V., Schapoval, E.E.: Antifungal activity of the lemongrass oil and citral against Candida spp. Braz. J. Infect. Dis. 12, 63–66 (2008)

    Article  PubMed  Google Scholar 

  12. Dai, J., Bai, M., Li, C., San Cheang, W., Cui, H., Lin, L.: Antibacterial properties of citral against Staphylococcus aureus: from membrane damage to metabolic inhibition. Food Biosci. 53, 102770 (2023)

    Article  CAS  Google Scholar 

  13. Ding, B., Chen, H., Tan, J., Meng, Q., Zheng, P., Ma, P.A., Lin, J.: ZIF-8 nanoparticles evoke pyroptosis for high-efficiency cancer immunotherapy. Angew. Chem. 135(10), e202215307 (2023)

    Article  Google Scholar 

  14. Ke, Q., Jing, P., Wan, Y., Xia, T., Zhang, L., Cao, X., Jiang, K.: Sulfonated vitamin K3 mediated bimetallic metal-organic framework for multistage augmented cancer therapy. J. Colloid Interface Sci. 654, 224–234 (2024)

    Article  CAS  PubMed  Google Scholar 

  15. Serrano, M., Martínez-Romero, D., Guillén, F., Valverde, J.M., Zapata, P.J., Castillo, S., Valero, D.: The addition of essential oils to MAP as a tool to maintain the overall quality of fruits. Trends Food Sci. 19(9), 464–471 (2008)

    Article  CAS  Google Scholar 

  16. Navarro-Martínez, A., López-Gómez, A., Martínez-Hernández, G.B.: Potential of essential oils from active packaging to highly reduce ethylene biosynthesis in broccoli and apples. ACS Food Sci. Technol. 1(6), 1050–1058 (2021)

    Article  Google Scholar 

  17. Rabbany, A.B.M.G., Mizutani, F.: Effect of essential oils on ethylene production and ACC content in apple fruit and peach seed tissues. J. Jpn. Soc. Hortic. Sci. 65(1), 7–13 (1996)

    Article  CAS  Google Scholar 

  18. Wei, L., Chen, C., Wan, C., Chen, M., Chen, J.: Citral delays postharvest senescence of kiwifruit by enhancing antioxidant capacity under cold storage. J. Food Qual. 2021, 6684172 (2021)

    Article  Google Scholar 

  19. Aytac, Z., Celebioglu, A., Yildiz, Z.I., Uyar, T.: Efficient encapsulation of citral in fast-dissolving polymer-free electrospun nanofibers of cyclodextrin inclusion complexes: high thermal stability, longer shelf-life, and enhanced water solubility of citral. Nanomaterials 8(10), 793 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sun, Y., Guo, D., Hua, Z., Sun, H., Zheng, Z., Xia, X., Shi, C.: Attenuation of multiple Vibrio parahaemolyticus virulence factors by citral. Front. Microbiol. 10, 894 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  21. Maksimowski, P., Rumianowski, T.: Properties of the gamma-cyclodextrin/CL-20 system. Cent. Eur. J. Energ Mater. 13(1), 217–229 (2016)

    Article  CAS  Google Scholar 

  22. Kathuria, A., El Badawy, A., Al Ghamdi, S., Hamachi, L.S., Kivy, M.B.: Environmentally benign bioderived, biocompatible, thermally stable MOFs suitable for food contact applications. Trends Food Sci. 138, 323–338 (2023)

    Article  CAS  Google Scholar 

  23. Kathuria, A., Lee, Y.S., Shin, J., Kivy, M.: Crystalline γ-cyclodextrin metal organic framework nano-containers for encapsulation of benzaldehyde and their host–guest interactions. J. Incl. Phenom. Macrocycl. Chem. 102(9–10), 781–790 (2022)

    Article  CAS  Google Scholar 

  24. Kathuria, A., Pauwels, A.K., Buntinx, M., Shin, J., Harding, T.: Inclusion of ethanol in a nano-porous, bio-based metal organic framework. J. Incl. Phenom. Macrocycl. Chem. 95, 91–98 (2019)

    Article  CAS  Google Scholar 

  25. Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., Hutchison, G.R.: Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 4, 17 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J.: Auto dock 4 and auto dock tools 4: automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791 (2010)

    Article  Google Scholar 

  27. Trott, O., Olson, A.J.: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 31, 455–461 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thompson, M.A.: Molecular docking using ArgusLab, an efficient shape-based search algorithm and the a score scoring function. ACS Meeting, Philadelphia (2004)

    Google Scholar 

  29. Momma, K., Izumi, F.: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011)

    Article  CAS  Google Scholar 

  30. Zhang, B., Huang, J., Liu, K., Zhou, Z., Jiang, L., Shen, Y., Zhao, D.: Biocompatible cyclodextrin-based metal-organic frameworks for long-term sustained release of fragrances. Ind. Eng. Chem. Res. 58, 19767–19777 (2019)

    Article  CAS  Google Scholar 

  31. Kathuria, A., Harding, T., Auras, R., Kivy, M.B.: Encapsulation of hexanal in bio-based cyclodextrin metal organic framework for extended release. J. Incl. Phenom. Macrocycl. Chem. 101, 121–130 (2021)

    Article  CAS  Google Scholar 

  32. He, Y., Zhang, W., Guo, T., Zhang, G., Qin, W., Zhang, L., Wang, C., Zhu, W., Yang, M., Hu, X., Singh, V., Wu, L., Gref, R., Zhang, J.: Drug nanoclusters formed in confined nano-cages of CD-MOF: dramatic enhancement of solubility and bioavailability of azilsartan. Acta Pharm. Sin. B 9, 97–106 (2019)

    Article  PubMed  Google Scholar 

  33. Aoun, M., Chater, M., Marecot, P., Especel, C., Citral, L.G.: hydrogenation over Pt-M/CeO2 catalysts (M = Zn, Zr). In: Studies in surface science and catalysis, pp. 237–240. Elsevier, Amsterdam (2010)

    Google Scholar 

  34. Zhu, G., Feng, N., Xiao, Z., Zhou, R., Niu, Y.: Production and pyrolysis characteristics of citral–monochlorotriazinyl-β-cyclodextrin inclusion complex. J. Therm. Anal. Calorim. 120, 1811–1817 (2015)

    Article  CAS  Google Scholar 

  35. Dreier, L.B., Bonn, M., Backus, E.H.: Hydration and orientation of carbonyl groups in oppositely charged lipid monolayers on water. J. Phys. Chem. B 123(5), 1085–1089 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nie, B., Stutzman, J., Xie, A.: A vibrational spectral maker for probing the hydrogen-bonding status of protonated Asp and Glu residues. Biophys. J. 88(4), 2833–2847 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, D.C., Liu, J., Wang, C., Liu, Y., Wang, J.H., Han, X.: Application of metal-organic frameworks in the purification of indoor hexanal: experiments and DFT calculations. Build. Environ. 182, 107095 (2020)

    Article  Google Scholar 

  38. Al-Ghamdi, S., Kathuria, A., Abiad, M., Auras, R.: Synthesis of nanoporous carbohydrate metal-organic framework and encapsulation of acetaldehyde. J. Cryst. Growth 451, 72–78 (2016)

    Article  CAS  Google Scholar 

  39. Ficarra, R., Ficarra, P., Di Bella, M.R., Raneri, D., Tommasini, S., Calabro, M.L., Gamberini, M.C., Rustichelli, C.: Study of β-blockers/β-cyclodextrins inclusion complex by NMR, DSC, X-ray and SEM investigation. J. Pharm. Biomed. Anal. 23(1), 33–40 (2000)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors conceptualized the study together. AK coordinated various experimental tasks and oversaw the manuscript. LK, KRG, and AEB helped with the analysis and manuscript writing. MK led computational studies, host-guest interactions, XRD, SEM and writing.

Corresponding author

Correspondence to Ajay Kathuria.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kathuria, A., Kumar, L., Gaikwad, K.K. et al. Micro-encapsulation of citral using edible γ-cyclodextrin metal organic framework. J Incl Phenom Macrocycl Chem 104, 99–108 (2024). https://doi.org/10.1007/s10847-024-01220-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-024-01220-w

Keywords

Navigation