Skip to main content
Log in

Host–Guest Interaction Study of Resveratrol With Natural and Modified Cyclodextrins

  • Published:
Journal of inclusion phenomena and macrocyclic chemistry Aims and scope Submit manuscript

Abstract

The aim of this work is to increase the stability and water solubility of resveratrol by complexation with different cyclodextrins. Furthermore, physical–chemical properties of each inclusion compound were investigated. Complexes of resveratrol with cyclodextrins both native (α, β, γ) and modified (2-hydroxypropyl-β-cyclodextrin, dimethyl-β-cyclodextrin) were obtained by using the suspension method. An inclusion complex with β-cyclodextrin was also prepared by using the microwave. Solid state characterization of the products was carried out using Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray diffraction (DRX); solution studies were performed by UV–Vis spectrophotometry and 1H-NMR spectroscopy. Phase solubility profiles with all cyclodextrins employed were classified as AN type, indicating the formation of 1:1 stoichiometric inclusion complexes. Stability constants (K c) from the phase solubility diagrams were calculated. Stability studies in the solid state and in solution were performed; the photodegradation by UV–Vis spectrophotometry was monitored. The isomerization rate trans to cis, in ethanol solution, decreased with inclusion. The dissolution studies revealed that resveratrol dissolution rate was improved by the formation of inclusion complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lamuela-Raventos R.M., Romero-Perez A.I., Waterhouse A.L., de la Torre-Boronat M.C.: (1995) J. Agric. Food Chem. 43: 281

    Article  CAS  Google Scholar 

  2. Romero-Perez A.I., Ibern-Gomez M., Lamuela-Raventos R.M., de la Torre-Boronat M.C.: (1999). J. Agric. Food Chem. 47: 1533

    Article  PubMed  CAS  Google Scholar 

  3. Dixon R.A.: (2001) Nature 411: 843

    Article  PubMed  CAS  Google Scholar 

  4. Nonomura S., Kanagawa H., Makimoto A.: (1963). Yakugaku Zasshi 83: 988

    PubMed  CAS  Google Scholar 

  5. Renaud S. de, Lorgeril M. (1992). Lancet 339: 1523

    Article  PubMed  CAS  Google Scholar 

  6. Constant J.: (1997) Coron. Artery Dis. 8: 645

    Article  PubMed  CAS  Google Scholar 

  7. Kimura Y., Okuda H., Arichi S.: (1985) Biochim. Biophys. Acta 837: 209

    PubMed  CAS  Google Scholar 

  8. Bertelli A.A.E, Giovannini L., Giannessi D., Migliori M., Bernini W., Fregani M., Bertelli A.: (1995) Int. J. Tissue React. 17: 1

    PubMed  CAS  Google Scholar 

  9. Frankel E.N., Waterhouse A.L., Kinsella J.E.: (1993). Lancet 341: 1103

    Article  CAS  Google Scholar 

  10. Belguendouz L., Fremont L., Gozzelino M.T.: (1998). Biochem. Pharmacol. 55: 811

    Article  PubMed  CAS  Google Scholar 

  11. Chanvitayapongs S., Draczynska-Lusiak B., Sun A.Y.: (1997). Neuroreport 8: 1499

    Article  PubMed  CAS  Google Scholar 

  12. Jang M., Cai L., Udeani G., Slowing K.V., Thomas C.F., Pezzuto J.M.: (1997) Science 275: 218

    Article  PubMed  CAS  Google Scholar 

  13. Clement M.V., Hirpara J.L., Chawdhuryet S., Pervaiz S.: (1998) Blood 92: 996

    PubMed  CAS  Google Scholar 

  14. Fontecave M., Lepoivre M., Elleingand E., Gerez C., Guittet O.: (1998) FEBS Lett. 421: 277

    Article  PubMed  CAS  Google Scholar 

  15. Chan M.M.Y.: (2002). Biochem. Pharm. 63: 99

    Article  PubMed  CAS  Google Scholar 

  16. Rajewski R.A., Stella V.J.: (1996). J. Pharm. Sci. 85: 1142

    Article  PubMed  CAS  Google Scholar 

  17. Duchêne D., Wouessidjewe D., Ponchel G.: (1999) J. Control. Release 62: 263

    Article  PubMed  Google Scholar 

  18. Fromming K., Szejtli J.: (1994) Cyclodextrins in Pharmacy, Kluwer Acad. Publ., Dordrecht

    Google Scholar 

  19. Wang Y., Catana F., Yang Y., Roderick R., van Breemen R.B.: (2002) J. Agr. Food Chem. 50: 431

    Article  CAS  Google Scholar 

  20. Mattivi F.: (1993) Z. Lebensm. Unters. Forsch. 196: 522

    Article  PubMed  CAS  Google Scholar 

  21. Wen X., Tan F., Jing Z., Liu Z.: (2004) J. Pharm. Biom. Anal. 34: 517

    Article  CAS  Google Scholar 

  22. Higuchi T., Connors K.A.: (1965) Adv. Anal. Chem. Instr. 4: 117

    CAS  Google Scholar 

  23. ICH, Harmonized Tripartite Guideline (Q1B), November 1996

  24. Mura P., Maestrelli F., Cirri M., Furlanetto S., Pinzauti S.: (2003). J. Thermal Anal. Cal. 74:635

    Article  Google Scholar 

  25. Dollo G., Le Corre P., Chevanne F., Le Verge R.: (1996). Int. J. Pharm. 131: 219

    Article  CAS  Google Scholar 

  26. Nozawa Y., Morioka Y., Sadzuka Y., Miyagishima A., Hirota S., Guillory J.K.: (1997). Pharm. Acta Helv. 72: 113

    Article  CAS  Google Scholar 

  27. Astakova A.V., Demin N.B.: (2004). Pharma. Chem. J. 38: 46

    Google Scholar 

  28. Uekama K., Fujise A., Otagiri M., Hirayama F., Inaba K.: (1984) Chem. Pharm. Bull. 32: 275

    CAS  Google Scholar 

  29. Calabrò M.L., Tommasini S., Donato P., Ranieri D., Stancanelli R., Ficarra P., Ficarra R., Costa C., Catania S., Rustichelli C., Gamberini G.: (2004). J. Pharm. Biom. Anal. 35: 364

    Google Scholar 

  30. Trapani G., Latrofa A., Franco M., Lopedota A., Sanna E., Liso G.: (1998). J. Pharm. Sci. 87: 514

    Article  PubMed  CAS  Google Scholar 

  31. Ueda H., Nagai T.: (1980). Chem. Pharm. Bull. 28: 1415

    CAS  Google Scholar 

  32. Cabral−Marques H.M., Hadgraft J., Kellaway I.W., Pugh W.J.: (1990). Int. J. Pharm. 63: 267

    Article  CAS  Google Scholar 

  33. Fronza G., Mele A., Redenti E., Ventura P.: (1992). J. Pharm. Sci. 81: 1162

    Article  PubMed  CAS  Google Scholar 

  34. Moyano J.R., Arias−Bianco M.J., Gines J.M., Rabasco A.M., Perez−Martinez J.I., Mor M., Giordano M.: (1997) J. Pharm. Sci. 86: 72

    Article  PubMed  CAS  Google Scholar 

  35. Djedani F., Perly B.: (1991), NMR of cyclodextrins, derivatives and inclusion compounds. In: Duchêne D., (Ed.), New Trends in Cyclodextrins and Derivatives, Editions de Santé , Paris pp.217–246

    Google Scholar 

  36. Harata K.: (1990), Macrocyclic conformation of methylated cyclodestrins. In: Duchêne D., (Ed.), Minutes 5th International Symposium on Cyclodextrins, Editions de Santé , Paris pp.77–81

    Google Scholar 

  37. Smolkova-Keulemansova E., Feltl L., Snopek J, (1990). Cyclodextrins and their derivatives in modern analytical high-performance separation methods. In: Duchêne D., (Ed.), Minutes 5th International Symposium on Cyclodextrins, Editions de Santé , Paris, pp.617–622

    Google Scholar 

Download references

Acknowledgements

We are indebted to our Professor Riccardo Stradi (Istituto di Chimica Organica “A.Marchesini”, Università degli Studi di Milano, Facoltà di Farmacia) for the helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Pini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertacche, V., Lorenzi, N., Nava, D. et al. Host–Guest Interaction Study of Resveratrol With Natural and Modified Cyclodextrins. J Incl Phenom Macrocycl Chem 55, 279–287 (2006). https://doi.org/10.1007/s10847-006-9047-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-006-9047-8

Keywords

Navigation