Skip to main content

Advertisement

Log in

Encapsulation of hexanal in bio-based cyclodextrin metal organic framework for extended release

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Porous materials have been widely studied for encapsulation and controlled release of active species for packaging applications. This study examines the encapsulation efficiency of hexanal in γ-cyclodextrin metal organic frameworks (γ-CDMOF) for potential active packaging applications. γ-CDMOF was synthesized and hexanal was encapsulated in the MOF using a vapor diffusion process. The synthesized MOF was characterized both before and after the encapsulation of hexanal using x-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The diffraction peaks of various planes obtained from XRD characterization matched the theoretically calculated values. We identified the most stable docking sites using energy minimization calculations. FTIR and computational studied indicated hydrogen bonding interactions play a significant role in the stabilization of hexanal and γ-CDMOF inclusion complex. TGA characterization results revealed an encapsulation efficiency of about 15%. DSC and SEM study also supported encapsulation of hexanal in γ-CDMOF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Luzuriaga, M.A., Welch, R.P., Dharmawardana, M., Benjamin, C.E., Shahrivarkevishahi, A., Popal, S., Tuong, L.H., Creswell, C.T., Gassensmith, J.J.: Enhanced stability and controlled delivery of MOF-encapsulated vaccines and their immunogenic response in vivo. ACS Appl. Mater. Interfaces 11, 9740–9746 (2019)

    Article  CAS  PubMed  Google Scholar 

  2. Tashiro, S., Shionoya, M.: Novel porous crystals with macrocycle based well defined molecular recognition sites. Acc. Chem. Res. 53, 632–643 (2020)

    Article  CAS  PubMed  Google Scholar 

  3. Liu, B., He, Y., Han, L., Singh, V., Xu, X., Guo, T., Meng, F., Xu, X., York, P., Liu, Z., Zhang, J.: Microwave-Assisted Rapid Synthesis of γ-cyclodextrin metal-organic frameworks for size control and efficient drug loading. Cryst. Growth Des. 17, 1654–1660 (2017)

    Article  CAS  Google Scholar 

  4. Otte, M.: Size-selective molecular flasks. ACS Catal. 6, 6491–6510 (2016)

    Article  CAS  Google Scholar 

  5. Wang, P.-L., Xie, L.-H., Joseph, E.A., Li, J.-R., Su, X.-O., Zhou, H.-C.: Metal-organic frameworks for food safety. Chem. Rev. 119, 10638–10690 (2019)

    Article  CAS  PubMed  Google Scholar 

  6. Al-Rawashdeh, N.: Interactions of nabumetone with γ-cyclodextrin studied by fluorescence measurements. J. Incl. Phenom. Macrocycl. Chem. 51, 27–32 (2005)

    Article  CAS  Google Scholar 

  7. Krumkacheva, O.A., Gorelik, V.R., Bagryanskaya, E.G., Lebedeva, N.V., Forbes, M.D.E.: Supramolecular photochemistry in β-cyclodextrin hosts: a TREPR, NMR, and CIDNP investigation. Langmuir 26, 8971–8980 (2010)

    Article  CAS  PubMed  Google Scholar 

  8. Bani-Yaseen, A.D., Al-Rawashdeh, N., Al-Momani, I.: Influence of inclusion complexation with β-cyclodextrin on the photostability of selected imidazoline-derived drugs. J. Incl. Phenom. Macrocycl. Chem. 63, 109–115 (2009)

    Article  CAS  Google Scholar 

  9. Varghese, B., Suliman, F.O., Al-Hajri, A., Al Bishri, N.S.S., Al-Rawashda, N.: Spectral and theoretical study on complexation of sulfamethoxazole with β- and HPβ-cyclodextrins in binary and ternary systems. Spectrochim. Acta A 190, 392–401 (2018)

    Article  CAS  Google Scholar 

  10. Cai, H., Huang, Y.-L., Li, D.: Biological metal-organic frameworks: Structures, host–guest chemistry and bio-applications. Coord. Chem. Rev. 378, 207–221 (2019)

    Article  CAS  Google Scholar 

  11. Al-Ghamdi, S., Kathuria, A., Abiad, M., Auras, R.: Synthesis of nanoporous carbohydrate metal-organic framework and encapsulation of acetaldehyde. J. Cryst. Growth 451, 72–78 (2016)

    Article  CAS  Google Scholar 

  12. Kathuria, A., Pauwels, A., Buntinx, M., Shin, J., Harding, T.: Inclusion of ethanol in a nano-porous, bio-based metal organic framework. J. Incl. Phenom. Macrocycl. Chem. 95, 91–98 (2019)

    Article  CAS  Google Scholar 

  13. Feng, X., Wang, Y., Muhammad, F., Sun, F., Yuyang, T., Zhu, G.: Size, shape, and porosity control of medi-MOF-1 via growth modulation under microwave heating. Cryst. Growth Des. 19, 889–895 (2019)

    Article  CAS  Google Scholar 

  14. Andersen, R.A., Hamilton-Kemp, T.R., Hildebrand, D.F., McCracken, C.T., Collins, R.W., Fleming, P.D.: Structure–antifungal activity relationships among volatile C6 and C9 aliphatic aldehydes, ketones and alcohols. J. Agric. Food Chem. 42, 1563–1568 (1994)

    Article  CAS  Google Scholar 

  15. Maruzzella, J.C., Chiaramonte, J.S., Garofalo, M.: Effects of vapors of aromatic chemicals on fungi. J. Pharm. Sci. 50, 665–668 (1961)

    Article  CAS  Google Scholar 

  16. Rizzo, P., Cozzolino, A., Guerra, G.: Chemical stabilization of hexanal molecules by inclusion as guests of nanoporous-crystalline syndiotactic polystyrene crystals. Macromolecules 52, 2255–2264 (2019)

    Article  CAS  Google Scholar 

  17. Ranjan, S., Chandrasekaran, R., Paliyath, G., Lim, L.-T., Subramanian, J.: Effect of hexanal loaded electrospun fiber in fruit packaging to enhance the post-harvest quality of peach. Food Packag. 23, 100447 (2020)

    Article  Google Scholar 

  18. Shi, C., Jash, A., Lim, L.-T.: Activated release of hexanal and salicylaldehyde from imidazolidine precursors encapsulated in electrospun ethylcellulose-poly(ethylene oxide) fibers. S N Appl. Sci. 3, 385 (2021)

    Article  CAS  Google Scholar 

  19. Kayal, W.E., Paliyath, G., Sullivan, J.A., Subramanian, J.: Phospholipase D inhibition by hexanal is associated with calcium signal transduction events in raspberry. Hortic. Res. 4, 17042 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lehtonen, M., Kekalaninen, S., Nikkila, I., Kilpelainen, P., Tenkanen, M., Mikkonen, K.S.: Active food packaging through controlled in situ production and release of hexanal. Food Chem. 5, 100074 (2020)

    CAS  Google Scholar 

  21. Chemma, A., Padmanabhan, P., Subramanian, J., Blom, T., Paliyath, G.: Improving quality of greenhouse tomato (Solanum lycopersicum L.) by pre- and postharvest applications of hexanal containing formulations. Postharvest Biol. Technol. 95, 13–19 (2014)

    Article  CAS  Google Scholar 

  22. Zhang, Y., Zhou, Y., Cao, S., Li, S., Jin, S., Zhang, S.: Preparation, release and physicochemical characterization of ethyl butyrate and hexanal inclusion complexes with β- and γ-cyclodextrin. J. Microencapsul. 32, 711–718 (2015)

    Article  PubMed  CAS  Google Scholar 

  23. Kathuria, A., Al-Ghamdi, S., Abiad, M.G., Auras, R.: Multifunctional ordered bio-based mesoporous framework from edible compounds. J. Biobased Mater. Bioenergy 12, 449–454 (2018)

    Article  CAS  Google Scholar 

  24. Shinde, R., Rodov, V., Krishnakumar, S., Subramanian, J.: Active and intelligent packaging for reducing postharvest looses of fruits and vegetables. In: Paliyath, G., Subramanian, J., Lim, L.-T., Subramanian, K.S., Handa, A.K., Mattoo, A.K. (eds.) Post Harvest Biology and Nanotechnology, pp. 171–190. Wiley, Hoboken (2018)

    Chapter  Google Scholar 

  25. Zhang, B., Huang, J., Liu, K., Zhou, Z., Jiang, L., Shen, Y., Zhao, D.: Biocompatible cyclodextrin-based metal-organic frameworks for long-term sustained release of fragrances. Ind. Eng. Chem. Res. 58, 19767–19777 (2019)

    Article  CAS  Google Scholar 

  26. Yousefi, H., Su, H.-M., Imani, S.M., Alkhaldi, K., Filipe, C.D.M., Didar, T.F.: Intelligent food packaging: A review of smart sensing technologies for monitoring food quality. ACS Sens. 4, 808–821 (2019)

    Article  CAS  PubMed  Google Scholar 

  27. Groom, C.R., Bruno, I.J., Lightfoot, M.P., Ward, S.C.: The cambridge structural database. Acta Crystallogr. 2016(72), 171–179 (2016)

    Google Scholar 

  28. Ramirez-Guana, M., Marcu, A., Pon, A., Guo, A.C., Sajed, T., Wishart, N.A., Karu, N., Djoumbou, Y., Arndt, D., Wishart, D.S.: YMDB 2.0.: A significantly expanded version of the yeast metabolome database. Nucleic Acids Res. 45, D440–D445 (2017)

    Article  CAS  Google Scholar 

  29. Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., Hutchison, G.R.: Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 4, 17 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Momma, K., Izumi, F.: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011)

    Article  CAS  Google Scholar 

  31. Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J.: Auto dock 4 and auto dock tools 4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791 (2010)

    Article  CAS  Google Scholar 

  32. Trott, O., Olson, A.J.: AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 31, 455–461 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  33. He, Y., Zhang, W., Guo, T., Zhang, G., Qin, W., Zhang, L., Wang, C., Zhu, W., Yang, M., Hu, X., Singh, V., Wu, L., Gref, R., Zhang, J.: Drug nanoclusters formed in confined nano-cages of CD-MOF: dramatic enhancement of solubility and bioavailability of azilsartan. Acta Pharm. Sin. B 9, 97–106 (2019)

    Article  PubMed  Google Scholar 

  34. Neither, D., Kawaguchi, T., Hovancová, J., Eguchi, K., Dhont, J.K.G., Rita, R., Wiegand, S.: Role of hydrogen bonding of cyclodextrin-drug complexes probed by thermo diffusion. Langmuir 33, 8483–8492 (2017)

    Article  CAS  Google Scholar 

  35. Chang, X., Zhang, Y., Weng, X., Su, P., Wu, W., Mo, Y.: Red-shifting versus blue-shifting hydrogen bonds: perspective from ab initio valence bond theory. J. Phys. Chem. 120, 2749–2756 (2016)

    Article  CAS  Google Scholar 

  36. Dreier, L.B., Bonn, M., Backus, E.H.G.: Hydration and orientation of carbonyl groups in oppositely charged lipid monolayers on water. J. Phys. Chem. B 123, 1085–1089 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nie, B., Stutzman, J., Xie, A.: A vibrational spectral maker for probing the hydrogen-bonding status of protonated Asp and Glu residues. Biophys. J . 88, 2833–2847 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ryu, I.S., Liu, X., Jin, Y., Sun, J., Lee, Y.J.: Stoichiometric analysis of competing intermolecular hydrogen bonds using infrared spectroscopy. RSC Adv. 8, 23481 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, D.-C., Liu, J., Wang, C., Liu, Y., Wang, J.-H., Han, X.: Application of metal-organic frameworks in the purification of indoor hexanal: Experiments and DFT calculations. Build. Environ. 182, 107095 (2020)

    Article  Google Scholar 

  40. Ahenkorah, C.K., Zaitoon, A., Apalangya, V.A., Afrane, G., Lim, L.T.: Moisture-activated release of hexanal from imidazolidine precursor encapsulated in ethylcellulose/poly(ethylene oxide) nonwoven for shelf-life extension of papaya. Food Packag. Shelf Life 25, 100532 (2020)

    Article  Google Scholar 

  41. Ficarra, R., Ficarra, P., Bella, M.R.D., Raneri, D., Tommasini, S., Calabro, M.L., Gamberini, M.C., Rustichelli, C.: Study of blockers/cyclodextrins inclusion complex by NMR, DSC, X-ray and SEM investigation. J. Pharm. Biomed Anal. 23, 33–40 (2000)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Evan Noel Sommerville, Riley Andrew Harden, & Travis Lang, Cal Poly undergraduates and An-Katrien Pauwels, visiting graduate student, Hasselt University, Belgium for their help with experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Kathuria.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kathuria, A., Harding, T., Auras, R. et al. Encapsulation of hexanal in bio-based cyclodextrin metal organic framework for extended release. J Incl Phenom Macrocycl Chem 101, 121–130 (2021). https://doi.org/10.1007/s10847-021-01095-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-021-01095-1

Keywords

Navigation