Skip to main content
Log in

The effect of folate-appended methyl-β-cyclodextrin increases on survival rates in a peritoneal dissemination mouse models of human ovarian cancer

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Among gynaecological cancers, ovarian cancer is known to be highly sensitive to chemotherapy. However, it is often detected at an advanced stage since it exhibits few early symptoms, and therefore, patients tend to show poor prognosis. Therefore, the development of new anticancer agents for the treatment advanced stage cancers is required. We previously reported that folic acid-modified methyl-β-cyclodextrin (FA-M-β-CyD) is a promising anticancer agent that exhibits selective antitumor activity in cancers cells. However, the antitumor effect of FA-M-β-CyD in ovarian cancer is not known. Therefore, in this study, we investigated the antitumor effect of FA-M-β-CyD in ovarian cancer. FA-M-β-CyD showed excellent cytotoxic activity in the reduced folate carrier (RFC) positive human ovarian cancer ES-2 cells line. We found that the cytotoxic activity of FA-M-β-CyD in ES-2 (RFC+) cells is unlikely to be a result of apoptosis triggered by a decrease in mitochondrial membrane potential. Moreover, FA-M-β-CyD prolonged the survival of BALB/c nude mice bearing ES-2 (RFC+) cells. These results suggest the potential of FA-M-β-CyD as an antitumor agent for treatment of metastatic ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Moufarrij, S., Dandapani, M., Arthofer, E., Gomez, S., Srivastava, A., Lopez-Acevedo, M., Villagra, A., Chiappinelli, K.B.: Epigenetic therapy for ovarian cancer: promise and progress. Clin. Epigenet. 11, 7 (2019)

    Article  Google Scholar 

  2. Devouassoux-Shisheboran, M., Genestie, C.: Pathobiology of ovarian carcinomas. Chin. J. Cancer 34, 50–55 (2015)

    Article  CAS  Google Scholar 

  3. McGuire, W.P., 3rd.: Current status of taxane and platinum-based chemotherapy in ovarian cancer. J. Clin. Oncol. 21, 133s–135s (2003)

    Article  Google Scholar 

  4. Mikuła-Pietrasik, J., Witucka, A., Pakuła, M., Uruski, P., Begier-Krasińska, B., Niklas, A., Tykarski, A., Książek, K.: Comprehensive review on how platinum- and taxane-based chemotherapy of ovarian cancer affects biology of normal cells. Cell. Mol. Life Sci. CMLS 76, 681–697 (2019)

    Article  Google Scholar 

  5. Ahmed, N., Stenvers, K.L.: Getting to know ovarian cancer ascites: opportunities for targeted therapy-based translational research. Front. Oncol. 3, 256 (2013)

    Article  Google Scholar 

  6. Bender, M.L., Komiyama, M.: Cyclodextrin Chemistry. Springer, Berlin (1978)

    Book  Google Scholar 

  7. Connors, K.A.: The stability of cyclodextrin complexes in solution. Chem. Rev. 97, 1325–1358 (1997)

    Article  CAS  Google Scholar 

  8. Nabi, I.R., Le, P.U.: Caveolae/raft-dependent endocytosis. J. Cell Biol. 161, 673–677 (2003)

    Article  CAS  Google Scholar 

  9. Uekama, K.: Design and evaluation of cyclodextrin-based drug formulation. Chem. Pharm. Bull. 52, 900–915 (2004)

    Article  CAS  Google Scholar 

  10. Arima, H., Motoyama, K., Higashi, T.: Potential use of cyclodextrins as drug carriers and active pharmaceutical ingredients. Chem. Pharm. Bull. 65, 341–348 (2017)

    Article  CAS  Google Scholar 

  11. di Cagno, M.P.: The potential of cyclodextrins as novel active pharmaceutical ingredients: a short overview. Molecules (Basel, Switzerland) 22, 1 (2016)

    Article  Google Scholar 

  12. Liu, B., Turley, S.D., Burns, D.K., Miller, A.M., Repa, J.J., Dietschy, J.M.: Reversal of defective lysosomal transport in NPC disease ameliorates liver dysfunction and neurodegeneration in the npc1-/- mouse. Proc. Natl. Acad. Sci. USA 106, 2377–2382 (2009)

    Article  CAS  Google Scholar 

  13. Maeda, Y., Motoyama, K., Nishiyama, R., Higashi, T., Onodera, R., Nakamura, H., Takeo, T., Nakagata, N., Yamada, Y., Ishitsuka, Y., Kondo, Y., Irie, T., Era, T., Arima, H.: In vivo efficacy and safety evaluation of lactosyl-β-cyclodextrin as a therapeutic agent for hepatomegaly in Niemann-pick type C disease. Nanomaterials 9, 802 (2019)

    Article  CAS  Google Scholar 

  14. Ory, D.S., Ottinger, E.A., Farhat, N.Y., King, K.A., Jiang, X., Weissfeld, L., Berry-Kravis, E., Davidson, C.D., Bianconi, S., Keener, L.A., Rao, R., Soldatos, A., Sidhu, R., Walters, K.A., Xu, X., Thurm, A., Solomon, B., Pavan, W.J., Machielse, B.N., Kao, M., Silber, S.A., McKew, J.C., Brewer, C.C., Vite, C.H., Walkley, S.U., Austin, C.P., Porter, F.D.: Intrathecal 2-hydroxypropyl-β-cyclodextrin decreases neurological disease progression in Niemann-Pick disease, type C1: a non-randomised, open-label, phase 1–2 trial. Lancet (London, England) 390, 1758–1768 (2017)

    Article  CAS  Google Scholar 

  15. Grosse, P.Y., Bressolle, F., Pinguet, F.: Methyl-β-cyclodextrin in HL-60 parental and multidrug-resistant cancer cell lines: effect on the cytotoxic activity and intracellular accumulation of doxorubicin. Cancer Chemother. Pharmacol. 40, 489–494 (1997)

    Article  CAS  Google Scholar 

  16. Grosse, P.Y., Bressolle, F., Pinguet, F.: Antiproliferative effect of methyl-β-cyclodextrin in vitro and in human tumour xenografted athymic nude mice. Br. J. Cancer 78, 1165–1169 (1998)

    Article  CAS  Google Scholar 

  17. Yokoo, M., Kubota, Y., Mochinaga, S., Maeda, A., Ichinohe, T., Fujito, H., Higashi, T., Motoyama, K., Arima, H., Irie, T., Kimura, S.: Antiproliferative effect of 2-hydroxypropyl-β-cyclodextrin (HP-β-CyD) against chronic myeloid leukemia in vitro and in vivo. Blood 120, 2442 (2012)

    Article  Google Scholar 

  18. Kusakabe, T., Ozasa, K., Kobari, S., Momota, M., Kishishita, N., Kobiyama, K., Kuroda, E., Ishii, K.J.: Intranasal hydroxypropyl-β-cyclodextrin-adjuvanted influenza vaccine protects against sub-heterologous virus infection. Vaccine 34, 3191–3198 (2016)

    Article  CAS  Google Scholar 

  19. Yamamoto, N., Igbabvoa, U., Shimada, Y., Ohno-Iwashita, Y., Kobayashi, M., Wood, W.G., Fujita, S.C., Yanagisawa, K.: Accelerated Abeta aggregation in the presence of GM1-ganglioside-accumulated synaptosomes of aged apoE4-knock-in mouse brain. FEBS Lett. 569, 135–139 (2004)

    Article  CAS  Google Scholar 

  20. Yamamoto, N., Matsubara, T., Sato, T., Yanagisawa, K.: Age-dependent high-density clustering of GM1 ganglioside at presynaptic neuritic terminals promotes amyloid beta-protein fibrillogenesis. Biochim. Biophys. Acta. 1778, 2717–2726 (2008)

    Article  CAS  Google Scholar 

  21. Yang, D.S., Stavrides, P., Kumar, A., Jiang, Y., Mohan, P.S., Ohno, M., Dobrenis, K., Davidson, C.D., Saito, M., Pawlik, M., Huo, C., Walkley, S.U., Nixon, R.A.: Cyclodextrin has conflicting actions on autophagy flux in vivo in brains of normal and Alzheimer model mice. Hum. Mol. Genet. 26, 843–859 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Onodera, R., Motoyama, K., Arima, H.: Design and evaluation of folate-appended methyl-beta-cyclodextrin as a new antitumor agent. J. Incl. Phenom. Macrocycl. Chem. 70, 321–326 (2011)

    Article  CAS  Google Scholar 

  23. Onodera, R., Motoyama, K., Okamatsu, A., Higashi, T., Kariya, R., Okada, S., Arima, H.: Involvement of cholesterol depletion from lipid rafts in apoptosis induced by methyl-β-cyclodextrin. Int. J. Pharm. 452, 116–123 (2013)

    Article  CAS  Google Scholar 

  24. Galanzha, E.I., Kim, J.W., Zharov, V.P.: Nanotechnology-based molecular photoacoustic and photothermal flow cytometry platform for in-vivo detection and killing of circulating cancer stem cells. J. Biophotonics. 2, 725–735 (2009)

    Article  CAS  Google Scholar 

  25. Lu, Y., Low, P.S.: Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv. Drug. Deliv. Rev. 54, 675–693 (2002)

    Article  CAS  Google Scholar 

  26. Parker, N., Turk, M.J., Westrick, E., Lewis, J.D., Low, P.S., Leamon, C.P.: Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal. Biochem. 338, 284–293 (2005)

    Article  CAS  Google Scholar 

  27. Roche, A.C., Fajac, I., Grosse, S., Frison, N., Rondanino, C., Mayer, R., Monsigny, M.: Glycofection: facilitated gene transfer by cationic glycopolymers. Cell Mol. Life Sci. 60, 288–297 (2003)

    Article  CAS  Google Scholar 

  28. Motoyama, K., Onodera, R., Tanaka, N., Kameyama, K., Higashi, T., Kariya, R., Okada, S., Arima, H.: Evaluation of antitumor effects of folate-conjugated methyl-β-cyclodextrin in melanoma. Biol. Pharm. Bull. 38, 374–379 (2015)

    Article  CAS  Google Scholar 

  29. Onodera, R., Motoyama, K., Okamatsu, A., Higashi, T., Arima, H.: Potential use of folate-appended methyl-β-cyclodextrin as an anticancer agent. Sci. Rep. 3, 1104 (2013)

    Article  Google Scholar 

  30. Onodera, R., Motoyama, K., Tanaka, N., Ohyama, A., Okamatsu, A., Higashi, T., Kariya, R., Okada, S., Arima, H.: Involvement of autophagy in antitumor activity of folate-appended methyl-β-cyclodextrin. Sci. Rep. 4, 4417 (2014)

    Article  Google Scholar 

  31. Gonen, N., Assaraf, Y.G.: Antifolates in cancer therapy: structure, activity and mechanisms of drug resistance. Drug Resist. Updat. 15, 183–210 (2012)

    Article  CAS  Google Scholar 

  32. Siu, M.K., Kong, D.S., Chan, H.Y., Wong, E.S., Ip, P.P., Jiang, L., Ngan, H.Y., Le, X.F., Cheung, A.N.: Paradoxical impact of two folate receptors, FRα and RFC, in ovarian cancer: effect on cell proliferation, invasion and clinical outcome. PLoS ONE 7, e47201 (2012)

    Article  CAS  Google Scholar 

  33. Irie, T., Uekama, K.: Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. J. Pharm. Sci. 86, 147–162 (1997)

    Article  CAS  Google Scholar 

  34. Mizushima, N., Yoshimori, T., Levine, B.: Methods in mammalian autophagy research. Cell 140, 313–326 (2010)

    Article  CAS  Google Scholar 

  35. Mizushima, N., Komatsu, M.: Autophagy: renovation of cells and tissues. Cell 147, 728–741 (2012)

    Article  Google Scholar 

  36. Kameyama, K., Motoyama, K., Tanaka, N., Yamashita, Y., Higashi, T., Arima, H.: Induction of mitophagy-mediated antitumor activity with folate-appended methyl-β-cyclodextrin. Int. J. Nanomed. 12, 3433–3446 (2017)

    Article  CAS  Google Scholar 

  37. Garofalo, T., Giammarioli, A.M., Misasi, R., Tinari, A., Manganelli, V., Gambardella, L., Pavan, A., Malorni, W., Sorice, M.: Lipid microdomains contribute to apoptosis-associated modifications of mitochondria in T cells. Cell Death Differ. 12, 1378–1389 (2005)

    Article  CAS  Google Scholar 

  38. Garofalo, T., Tinari, A., Matarrese, P., Giammarioli, A.M., Manganelli, V., Ciarlo, L., Misasi, R., Sorice, M., Malorni, W.: Do mitochondria act as “cargo boats” in the journey of GD3 to the nucleus during apoptosis? FEBS Lett. 581, 3899–3903 (2007)

    Article  CAS  Google Scholar 

  39. Malorni, W., Giammarioli, A.M., Garofalo, T., Sorice, M.: Dynamics of lipid raft components during lymphocyte apoptosis: the paradigmatic role of GD3. Apoptosis 12, 941–949 (2007)

    Article  CAS  Google Scholar 

  40. Martinez-Abundis, E., Garcia, N., Correa, F., Franco, M., Zazueta, C.: Changes in specific lipids regulate BAX-induced mitochondrial permeability transition. FEBS J. 274, 6500–6510 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by a Grant-in-Aid for Scientific Research (C) from the Ministry of Education, Science and Culture of Japan (20K07085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiichi Motoyama.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onodera, R., Sakai, A., Tokuda, A. et al. The effect of folate-appended methyl-β-cyclodextrin increases on survival rates in a peritoneal dissemination mouse models of human ovarian cancer. J Incl Phenom Macrocycl Chem 102, 143–149 (2022). https://doi.org/10.1007/s10847-021-01109-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-021-01109-y

Keywords

Navigation