Skip to main content
Log in

Practical Bipartite Consensus for Networked Lagrangian Systems in Cooperation-Competition Networks

  • Regular paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper gains an insight into the practical bipartite consensus problem of networked Lagrangian systems (NLSs) in the context of dynamics. The distributed leaderless and leader-following practical bipartite consensus control laws are proposed in cooperation-competition networks with uncertain parameters, effectively extending the theoretical framework in cooperation networks for NLSs. In the leaderless case, the symmetric regions are newly established to facilitate the final convergence analysis. By employing the structurally balanced networked topologies, a novel symmetric positive definite matrix is exploited to derive the gain selection criteria in the leader-following case. Finally, numerical simulations of a network of revolute joint manipulators are illustrated to verify the theoretical results under positive-negative and all-negative topologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All simulation data in this study are included in this article.

References

  1. Wang, H.: Consensus of networked mechanical systems with communication delays: a unified framework. IEEE Trans. Autom. Control 59(6), 1571–1576 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dos Santos, C.R., Carvalho, J.R.H., Souza, F.O., Savino, H.J.: Exponential consensus with decay rate estimation for heterogeneous multi-agent systems. J. Intell. Robot. Syst. 95, 543–553 (2019)

    Article  Google Scholar 

  3. Ning, B., Han, Q., Zuo, Z.: Practical fixed-time consensus for integrator-type multi-agent systems: a time base generator approach. Automatica 105, 406–414 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Qin, J., Yu, C.: Cluster consensus control of generic linear multi-agent systems under directed topology with acyclic partition. Automatica 49(9), 2898–2905 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Zhao, L., Yu, J., Shi, P.: Command filtered backstepping-based attitude containment control for spacecraft formation. IEEE Trans. Syst. Man Cybern. Syst. 51(2), 1278–1287 (2021)

    Article  Google Scholar 

  6. Cao, Y., Ren, W., Meng, Z.: Decentralized finite-time sliding mode estimators and their applications in decentralized finite-time formation tracking. Syst. Control Lett. 59(9), 522–529 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Oh, K.K., Ahn, H.S.: Formation control of mobile agents based on distributed position estimation. IEEE Trans. Autom. Control 58(3), 737–742 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhang, W., Tang, Y., Huang, T., Vasilakos, A.V.: Consensus of networked Euler–Lagrange systems under time-varying sampled-data control. IEEE Trans. Ind. Informat. 14(2), 535–544 (2018)

    Article  Google Scholar 

  9. Wang, H., Xie, Y.: Flocking of networked mechanical systems on directed topologies: a new perspective. Int. J. Control 88(4), 872–884 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wang, H.: Flocking of networked uncertain Euler-Lagrange systems on directed graphs. Automatica 49(9), 2774–2779 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dong, Y., Huang, J.: Consensus and flocking with connectivity preservation of uncertain Euler-Lagrange multi-agent systems. ASME J. Dyn. Syst. Meas. Control. 140(9) (2018)

  12. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fax, J.A., Murray, R.M.: Information flow and cooperative control of vehicle formations. IEEE Trans. Autom. Control 49(9), 1465–1476 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ren, W., Beard, R.W.: Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. Autom. Control 50(5), 655–661 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wu, X., Xiang, L., Zhou, J.: Distributed adaptive tracking backstepping control in networked nonidentical Lagrange systems. Nonlin. Dyn. 78, 1137–1148 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, G., Wang, C., Cai, X., Ji, Y.: Distributed leaderless and leader-following consensus control of multiple Euler-Lagrange systems with unknown control directions. J. Intell. Robot. Syst. 89, 439–463 (2018)

    Article  Google Scholar 

  17. Patel, K., Mehta, A.: Discrete-time event-triggered higher order sliding mode control for consensus of 2-DOF robotic arms. Eur. J. Control 56, 231–241 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hock, A., Schoellig, A.P.: Distributed iterative learning control for multiagent systems: Theoretic developments and application to formation flying. Auton. Robot. 43(8), 1989–2010 (2019)

    Article  Google Scholar 

  19. Chen, X., Zhao, L.: Observer-based finite-time attitude containment control of multiple spacecraft systems. IEEE Trans. Circuits Syst. II-Express Briefs 68(4), 1273–1277 (2021)

    Google Scholar 

  20. Bechlioulis, C.P., Demetriou, M.A., Kyriakopoulos, K.J.: A distributed control and parameter estimation protocol with prescribed performance for homogeneous lagrangian multi-agent systems. Auton. Robot. 42, 1525–1541 (2018)

    Article  Google Scholar 

  21. Ren, W.: Distributed leaderless consensus algorithms for networked Euler-Lagrange systems. Int. J. Control 82(11), 2137–2149 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mei, J., Ren, W., Ma, G.: Distributed containment control for Lagrangian networks with parametric uncertainties under a directed graph. Automatica 48(4), 653–659 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, J., Ji, J., Zhou, J., Xiang, L., Zhao, L.: Adaptive group consensus in uncertain networked Euler-Lagrange systems under directed topology. Nonlin. Dyn. 82(3), 1145–1157 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhao, L., Yu, J., Wang, Q.: Adaptive finite-time containment control of uncertain multiple manipulator systems. IEEE Trans. Cybern. https://doi.org/10.1109/TCYB.2020.2981090 (2020)

  25. Xia, W., Cao, M., Johansson, K.H.: Structural balance and opinion separation in trust-mistrust social networks. IEEE Trans. Control Netw. Syst. 3(1), 46–56 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Altafini, C.: Consensus problems on networks with antagonistic interactions. IEEE Trans. Autom. Control 58(4), 935–946 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hu, J., Zheng, W.: Emergent collective behaviors on coopetition networks. Phys. Lett. A 378 (26), 1787–1796 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hu, J., Wu, Y., Li, T., Ghosh, B.K.: Consensus control of general linear multiagent systems with antagonistic interactions and communication noises. IEEE Trans. Autom. Control 64(5), 2122–2127 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Meng, D.: Bipartite containment tracking of signed networks. Automatica 79, 282–289 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ring, W., Wirth, B.: Optimization methods on Riemannian manifolds and their application to shape space. SIAM J. Optim. 22(2), 596–627 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hu, H., Wen, G., Yu, W., Xuan, Q., Chen, G.: Swarming behavior of multiple Euler-Lagrange systems with cooperation-competition interactions: An auxiliary system approach. IEEE Trans. Neural Netw. Learn. Syst. 29(11), 5726–5737 (2018)

    Article  MathSciNet  Google Scholar 

  32. Hu, H., Wen, G., Yu, W., Cao, J., Huang, T.: Finite-time coordination behavior of multiple Euler-Lagrange systems in cooperation-competition networks. IEEE Trans. Cybern. 49(8), 2967–2979 (2019)

    Article  Google Scholar 

  33. Wu, Y., Ge, M., Ding, T., Chen, C., Ling, G.: Task-space bipartite tracking of networked robotic systems via hierarchical finite-time control. Nonlin. Dyn. 100(4), 3469–3483 (2020)

    Article  Google Scholar 

  34. Cheah, C.C., Wang, D.: Region reaching control of robots: theory and experiments. In: IEEE International Conference on Robotics and Automation, pp 974–979 (2005)

  35. Cheah, C.C., Hou, S., Slotine, J.J.E.: Region-based shape control for a swarm of robots. Automatica 45(10), 2406–2411 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ma, M., Cai, J., Zhou, J.: Adaptive practical synchronisation of Lagrangian networks with a directed graph via pinning control. IET Control Theory Appl. 9(14), 2157–2164 (2015)

    Article  MathSciNet  Google Scholar 

  37. Yao, X., Ding, H., Ge, M.: Task-space tracking control of multi-robot systems with disturbances and uncertainties rejection capability. Nonlin. Dyn. 92(4), 1649–1664 (2018)

    Article  MATH  Google Scholar 

  38. Liu, J., Miao, Z., Ji, J., Zhou, J.: Group regional consensus of networked lagrangian systems with input disturbances. ASME J. Dyn. Syst. Meas. Control 139(9) (2017)

  39. Slotine, J.J.E., Li, W.: Applied nonlinear control. Prentice-hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  40. Liu, J., Li, H., Ji, J., Luo, J.: Group-bipartite consensus in the networks with cooperation-competition interactions. IEEE Trans. Circuits Syst. II-Express Briefs 67(12), 3292–3296 (2020)

    Google Scholar 

  41. Daun, G.R., Patton, R.J.: A note on Hurwitz stability of matrices. Automatica 34(4), 509–511 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  42. Cai, X., Zhong, S., Wang, J., Shi, K.: Robust \(h_{\infty }\) control for uncertain delayed T-S fuzzy systems with stochastic packet dropouts. Appl. Math Comput. 385 (15), 125432 (2020)

    MathSciNet  MATH  Google Scholar 

  43. Shi, K., Wang, J., Zhong, S., Tang, Y., Cheng, J.: Non-fragile memory filtering of T-S fuzzy delayed neural networks based on switched fuzzy sampled-data control. Fuzzy Sets Syst. 394(1), 40–64 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  44. Hamedani, M.H., Zekri, M., Sheikholeslam, F., Selvaggio, M., Ficuciello, F., Siciliano, B.: Recurrent fuzzy wavelet neural network variable impedance control of robotic manipulators with fuzzy gain dynamic surface in an unknown varied environment. Fuzzy Sets Syst. 416, 1–26 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  45. Ma, B., Li, Y., An, T., Dong, B.: Compensator-critic structure-based neuro-optimal control of modular robot manipulators with uncertain environmental contacts using non-zero-sum games. Knowl.-Based Syst. 224(19), 107100 (2021)

    Article  Google Scholar 

  46. Cruz, D., Chairez, I., Alexander, P.: Non-singular terminal sliding-mode control for a manipulator robot using a barrier Lyapunov function. ISA Trans. https://doi.org/10.1016/j.isatra.2021.04.001 (2021)

  47. Ge, M., Guan, Z., Yang, C., Chen, C., Zheng, D., Chi, M.: Task-space coordinated tracking of multiple heterogeneous manipulators via controller-estimator approaches. J. Frankl. Inst. 353(15), 3722–3738 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  48. Peng, Z., Luo, R., Hu, J., Shi, K., Nguang, S.K., Ghosh, B.K.: Optimal tracking control of nonlinear multiagent systems using internal reinforce Q-learning. IEEE Trans. Neural Netw. Learn. Syst. https://doi.org/10.1109/TNNLS.2021.3055761 (2021)

  49. Zhao, C., Zhong, S., Zhong, Q., Shi, K.: Synchronization of Markovian complex networks with input mode delay and Markovian directed communication via distributed dynamic event-triggered control. Nonlinear Anal.Hybrid Syst. 36, 100883 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhao, C., Liu, X., Zhong, S., Shi, K., Liao, D., Zhong, Q.: Secure consensus of multi-agent systems with redundant signal and communication interference via distributed dynamic event-triggered control. ISA Trans. 112, 89–98 (2021)

    Article  Google Scholar 

  51. Hong, Y., Hu, J., Gao, L.: Tracking control for multi-agent consensus with an active leader and variable topology. Automatica 42, 1177–1182 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work described in this paper was supported by the National Natural Science Foundation of China(Nos 61625304, 61703181, 62073209, and 61991415) and the Shandong Provincial Natural Science Foundation of China (grant numbers ZR2020KA005 and ZR2017BF021).

Author information

Authors and Affiliations

Authors

Contributions

Tiehui Zhang: Conceptualization, Methodology, Validation, Writing - original draft

Hengyu Li: Supervision, Discussion, Validation, Resources, Writing - review& editing

Jun Liu: Supervision, Discussion, Software

Huayan Pu: Project administration, Supervision, Discussion

Shaorong Xie: Supervision, Discussion, Resources

Jun Luo: Supervision, Discussion, Resources

Corresponding author

Correspondence to Hengyu Li.

Ethics declarations

Ethics approval

All of the authors confirm that there is no potential acts of misconduct in this work, and approve of the journal upholding the integrity of the scientific record.

Consent to participate

The authors consent to participate.

Consent to Publis

The authors consent to publish.

Conflict of Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Lemma 2

Proof

Without loss of generality, one only needs to verify that the i th follower applies. According to Eq. 19, the conclusion can be obtained if the following formula holds

$$ \begin{array}{cc}[(-|a_{i1}|\phi_{i}+a_{i1}\phi_{1})+(-|a_{i2}|\phi_{i}+a_{i2}\phi_{2})+\cdots \\ \cdots+(-|a_{in}|\phi_{i}+a_{in}\phi_{n})-b_{i}\phi_{i}]d+b_{i}\phi_{i}d=0. \end{array} $$
(23)

In fact, one only needs to demonstrate that when the followers i and j are in the positive-negative or all-negative structurally balanced network, −|aij|ϕi + aijϕj = 0 arises, i,j ∈{1, 2,⋯ ,n}. For simplicity, the all-negative case is considered here. According to the results of [27], if i and j are in the same subset \(\mathcal V_{l}, l=1, 2\), implying that aij = 0, thus Eq. 1 holds. If i and j are in the different subsets, ϕi = −ϕj. Consequently, aij ≤ 0, resulting in −|aij| = aij. Accordingly, −|aij|ϕi = −aijϕj, so that Eq. 1 still holds. Therefore, Lemma 2 is proven. □

Proof of Lemma 3

Proof

It follows from the structures of L and Φ that ΦLΦ is a traditional Laplacian matrix. Then \(\widehat H= ({\varPhi }\widehat {P}+\zeta I_{n})[({{ {\varPhi } L{\varPhi }}})^{\mathrm {T}}+({{ {\varPhi } L{\varPhi }}})]+D\) is a symmetric matrix, where D is a nonnegative diagonal matrix with at least one positive element due to \(\gamma >\max \limits ^{n}_{i=1}\{|b_{i}|\}\). As the results of Ref. [51], combining Assumptions 3 with 4, it stands to reason that \(\widehat H\) is symmetric positive definite. □

Fig. 18
figure 18

Velocity evolution of the eight two-link revolute joint manipulators under \(\widehat {\mathcal {G}}_{1}\)

Fig. 19
figure 19

Position error evolution of the eight two-link revolute joint manipulators under \(\widehat {\mathcal {G}}_{1}\)

Fig. 20
figure 20

Velocity error evolution of the eight two-link revolute joint manipulators under \(\widehat {\mathcal {G}}_{1}\)

Fig. 21
figure 21

Position error evolution between the virtual leader and the eight two-link revolute joint manipulators under \(\widehat {\mathcal {G}}_{1}\) (first coordinate)

Fig. 22
figure 22

Position error evolution between the virtual leader and the eight two-link revolute joint manipulators under \(\widehat {\mathcal {G}}_{1}\) (Second coordinate)

Fig. 23
figure 23

Communication topology graph \(\widehat {\mathcal {G}}_{2}\) of the all-negative network with a virtual leader

Fig. 24
figure 24

Position evolution of the eight two-link revolute joint manipulators under \(\widehat {\mathcal {G}}_{2}\)

Fig. 25
figure 25

Velocity evolution of the eight two-link revolute joint manipulators under \(\widehat {\mathcal {G}}_{2}\)

Fig. 26
figure 26

Position error evolution of the eight two-link revolute joint manipulators under \(\widehat {\mathcal {G}}_{2}\)

Fig. 27
figure 27

Velocity error evolution of the eight two-link revolute joint manipulators under \(\widehat {\mathcal {G}}_{2}\)

Fig. 28
figure 28

Position error evolution between the virtual leader and the eight two-link revolute joint manipulators under \(\widehat {\mathcal {G}}_{2}\) (first coordinate)

Fig. 12
figure 29

Position error evolution between the virtual leader and the eight two-link revolute joint manipulators under \(\widehat {\mathcal {G}}_{2}\) (Second coordinate)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Li, H., Liu, J. et al. Practical Bipartite Consensus for Networked Lagrangian Systems in Cooperation-Competition Networks. J Intell Robot Syst 103, 34 (2021). https://doi.org/10.1007/s10846-021-01493-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-021-01493-0

Keywords

Navigation