Skip to main content
Log in

Task-space bipartite tracking of networked robotic systems via hierarchical finite-time control

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the finite-time bipartite tracking problem of networked robotic systems (NRSs) with external disturbances in the task space. Based on the sliding mode control theory, a novel hierarchical finite-time control algorithm (HFTCA) is designed to force two antagonistic subgroups of the NRS to reach two arbitrarily small neighborhoods of the leader state with opposite signs in a finite time. The presented HFTCA is composed of the local control layer, which aims to drive the system state to track the estimated state, and the distributed estimator layer, whose objective is to estimate the above-mentioned neighborhoods using other local interactions. By employing the Lyapunov stability theory, we derive some sufficient conditions for guaranteeing the practical convergence of the regulated bipartite tracking errors. Finally, simulation results are presented to demonstrate the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Chang, X.H., Huang, R., Wang, H., Liu, L.: Robust design strategy of quantized feedback control. IEEE Trans. Circuits Syst. II Express Briefs (2019). https://doi.org/10.1109/TCSII.2019.2922311

    Article  Google Scholar 

  2. Ge, M.F., Guan, Z.H., Hu, B., He, D.X., Liao, R.Q.: Distributed controller-estimator for target tracking of networked robotic systems under sampled interaction. Automatica 69, 410–417 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Ding, T.F., Ge, M.F., Xiong, C.H., Park, J.H.: Bipartite consensus for networked robotic systems with quantized-data interactions. Inf. Sci. 511, 229–242 (2020)

    MathSciNet  Google Scholar 

  4. Liang, C.D., Ge, M.F., Liu, Z.W., Wang, Y.W., Karimi, H.R.: Output multiformation tracking of networked heterogeneous robotic systems via finite-time hierarchical control. IEEE Trans. Cybern. (2020). https://doi.org/10.1109/TCYB.2020.2968403

    Article  Google Scholar 

  5. Ge, M.F., Liu, Z.W., Wen, G., Yu, X., Huang, T.: Hierarchical controller-estimator for coordination of networked Euler-Lagrange systems. IEEE Trans. Cybern. 50(6), 2450–2461 (2020)

    Google Scholar 

  6. Chang, X.H., Li, Z.M., Xiong, J., Wang, Y.M.: LMI approaches to input and output quantized feedback stabilization of linear systems. Appl. Math. Comput. 315, 162–175 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Li, Z., Ge, S.S., Wang, Z.: Robust adaptive control of coordinated multiple mobile manipulators. Mechatronics 18(5–6), 239–250 (2008)

    Google Scholar 

  8. Qian, S., Zi, B., Ding, H.: Dynamics and trajectory tracking control of cooperative multiple mobile cranes. Nonlinear Dyn. 83(1–2), 89–108 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Li, Z.M., Chang, X.H., Yu, L.: Robust quantized Hiltering for discrete-time uncertain systems with packet dropouts. Appl. Math. Comput. 275, 361–371 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Ge, M.F., Guan, Z.H., Yang, C., Li, T., Wang, Y.W.: Time-varying formation tracking of multiple manipulators via distributed finite-time control. Neurocomputing 202, 20–26 (2016)

    Google Scholar 

  11. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)

    MATH  Google Scholar 

  13. Liang, C.D., Wang, L., Yao, X.Y., Liu, Z.W., Ge, M.F.: Multi-target tracking of networked heterogeneous collaborative robots in task space. Nonlinear Dyn. 97, 1159–1173 (2019)

    Google Scholar 

  14. Zou, Y., Meng, Z.: Coordinated trajectory tracking of multiple vertical take-off and landing UAVs. Automatica 99, 33–40 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Wang, H.: Passivity based synchronization for networked robotic systems with uncertain kinematics and dynamics. Automatica 49(3), 755–761 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Aghababa, M.P.: Design of an adaptive finite-time controller for synchronization of two identical/different non-autonomous chaotic flywheel governor systems. Chin. Phys. B 21(3), 030502 (2012)

    MathSciNet  Google Scholar 

  17. Dong, X., Zhou, Y., Ren, Z., Zhong, Y.: Time-varying formation tracking for second-order multi-agent systems subjected to switching topologies with application to quadrotor formation flying. IEEE Trans. Ind. Electron. 64(6), 5014–5024 (2016)

    Google Scholar 

  18. Xiao, F., Wang, L., Chen, J., Gao, Y.: Finite-time formation control for multi-agent systems. Automatica 45(11), 2605–2611 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Altafini, C.: Consensus problems on networks with antagonistic interactions. IEEE Trans. Autom. Control 58(4), 935–946 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Zhu, Y., Li, S., Ma, J., Zheng, Y.: Bipartite consensus in networks of agents with antagonistic interactions and quantization. IEEE Trans. Circuits Syst. II Express Briefs 65(12), 2012–2016 (2018)

    Google Scholar 

  21. Tian, L., Ji, Z., Hou, T., Liu, K.: Bipartite consensus on coopetition networks with time-varying delays. IEEE Access 6, 10169–10178 (2018)

    Google Scholar 

  22. Ma, C.Q., Qin, Z.Y.: Bipartite consensus on networks of agents with antagonistic interactions and measurement noises. IET Control Theory Appl. 10(17), 2306–2313 (2016)

    MathSciNet  Google Scholar 

  23. Guo, X., Lu, J., Alsaedi, A., Alsaadi, F.E.: Bipartite consensus for multi-agent systems with antagonistic interactions and communication delays. Phys. A 495, 488–497 (2018)

    MathSciNet  Google Scholar 

  24. Shahvali, M., Naghibi-Sistani, M.B., Askari, J.: Adaptive output-feedback bipartite consensus for nonstrict-feedback nonlinear multi-agent systems: a finite-time approach. Neurocomputing 318, 7–17 (2018)

    Google Scholar 

  25. Zhai, S., Li, Q.: Practical bipartite synchronization via pinning control on a network of nonlinear agents with antagonistic interactions. Nonlinear Dyn. 87(1), 207–218 (2017)

    MATH  Google Scholar 

  26. Hu, J.: Bipartite consensus control of multiagent systems on coopetition networks. In: Abstract and Applied Analysis, vol. 2014. Hindawi, London, pp. 1–9 (2014)

  27. Hu, J., Zhu, H.: Adaptive bipartite consensus on coopetition networks. Phys. D 307, 14–21 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Yao, X.Y., Ding, H.F., Ge, M.F.: Fully distributed control for task-space formation tracking of nonlinear heterogeneous robotic systems. Nonlinear Dyn. 96(1), 87–105 (2019)

    Google Scholar 

  29. Yao, X.Y., Ding, H.F., Ge, M.F.: Task-space tracking control of multi-robot systems with disturbances and uncertainties rejection capability. Nonlinear Dyn. 92(4), 1649–1664 (2018)

    MATH  Google Scholar 

  30. Galicki, M.: Constraint finite-time control of redundant manipulators. Int. J. Robust Nonlinear Control 27(4), 639–660 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Galicki, M.: Finite-time control of robotic manipulators. Automatica 51, 49–54 (2015)

    MathSciNet  MATH  Google Scholar 

  32. Lu, J., Wang, Y., Shi, X., Cao, J.: Finite-time bipartite consensus for multiagent systems under detail-balanced antagonistic interactions. IEEE Trans. Syst. Man Cybern. Syst. (2019). https://doi.org/10.1109/TSMC.2019.2938419

    Article  Google Scholar 

  33. Zhao, L., Jia, Y., Yu, J.: Adaptive finite-time bipartite consensus for second-order multi-agent systems with antagonistic interactions. Syst. Control Lett. 102, 22–31 (2017)

    MathSciNet  MATH  Google Scholar 

  34. Sun, Y., Chen, L., Qin, H., Wang, W.: Distributed finite-time coordinated tracking control for multiple Euler–Lagrange systems with input nonlinearity. Nonlinear Dyn. 95(3), 2395–2414 (2019)

    MATH  Google Scholar 

  35. Wang, H., Yu, W., Wen, G., Chen, G.: Finite-time bipartite consensus for multi-agent systems on directed signed networks. IEEE Trans. Circuits Syst. I Regul. Pap. 65(12), 4336–4348 (2018)

    Google Scholar 

  36. Ding, S., Mei, K., Li, S.: A new second-order sliding mode and its application to nonlinear constrained systems. IEEE Trans. Autom. Control 64(6), 2545–2552 (2018)

    MathSciNet  MATH  Google Scholar 

  37. Yu, S., Yu, X., Shirinzadeh, B., Man, Z.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11), 1957–1964 (2005)

    MathSciNet  MATH  Google Scholar 

  38. Aghababa, M.P., Feizi, H.: Nonsingular terminal sliding mode approach applied to synchronize chaotic systems with unknown parameters and nonlinear inputs. Chin. Phys. B 21(6), 060506 (2012)

    Google Scholar 

  39. Mei, K., Ding, S.: Second-order sliding mode controller design subject to an upper-triangular structure. IEEE Trans. Syst. Man Cybern. Syst. (2018). https://doi.org/10.1109/TSMC.2018.2875267

    Article  Google Scholar 

  40. Spong, M.W., Vidyasagar, M.: Robot Dynamics and Control. Wiley, Hoboken (2008)

    Google Scholar 

  41. Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)

    MathSciNet  MATH  Google Scholar 

  42. Qian, C., Lin, W.: A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE Trans. Autom. Control 46(7), 1061–1079 (2001)

    MathSciNet  MATH  Google Scholar 

  43. Li, S., Du, H., Lin, X.: Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics. Automatica 47(8), 1706–1712 (2011)

    MathSciNet  MATH  Google Scholar 

  44. Aghababa, M.P., Aghababa, H.P.: Finite-time stabilization of uncertain non-autonomous chaotic gyroscopes with nonlinear inputs. Appl. Math. Mech. 33(2), 155–164 (2012)

    MathSciNet  MATH  Google Scholar 

  45. Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides: Control Systems, vol. 18. Springer, Des Moines (2013)

    Google Scholar 

  46. Ge, M.F., Guan, Z.H., Yang, C., Chen, C.Y., Zheng, D.F., Chi, M.: Task-space coordinated tracking of multiple heterogeneous manipulators via controller-estimator approaches. J. Frankl. Inst. 353(15), 3722–3738 (2016)

    MathSciNet  MATH  Google Scholar 

  47. Liu, J., Li, H., Luo, J.: Bipartite consensus in networked Euler–Lagrange systems with uncertain parameters under a cooperation-competition network topology. IEEE Control Syst. Lett. 3(3), 494–498 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants (61703374, 61973110 and 61503282), the Foundation of Hunan University of Science and Technology under Grant KJ1910, the Natural Science Foundation of Hubei Province of China under Grant 2019CFB559, and the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) under Grant CUG170656.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Feng Ge.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, YD., Ge, MF., Ding, TF. et al. Task-space bipartite tracking of networked robotic systems via hierarchical finite-time control. Nonlinear Dyn 100, 3469–3483 (2020). https://doi.org/10.1007/s11071-020-05675-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05675-7

Keywords

Navigation