Skip to main content
Log in

Dielectric and electrical studies on iron oxide (α-Fe2O3) nanoparticles synthesized by modified solution combustion reaction for microwave applications

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Hematite (α-Fe2O3) nanoparticles were synthesized by modified solution combustion method using a mixture of hexamethylenetetramine (HMTA) and glycine fuels at fuel to oxidant molar ratio (ϕ = 1) and fuel (HMTA) to fuel (glycine) weight ratio (1:3). DC-conductivity and dielectric studies of (α-Fe2O3) nanostructures were reported as a function of temperature. Above room temperature (RT), the conductivity showed an increasing trend with temperature which confirmed the semiconducting behaviour of the material. The conductivity behaviour followed Motts law which confirmed the three dimensional variable range hopping (3D VRH) mechanism in the synthesized system. Dielectric studies were carried out at room temperature with frequency range (1000 Hz to 1.5 MHz) as well as varying temperature (100 °C to 400 °C) at different frequencies (0.1 MHz, 0.3 MHz, 1 MHz, 1.3 MHz, and 1.5 MHz).The dielectric permittivity (є’)and tangent loss (tan δ) was found to increase with increase in temperature. In this synthesised material low value of dielectric loss was observed which depicted these materials as potential candidates for microwave applications. More than that studied material was characterised by Raman spectroscopy which revealed that seven active Raman modes were present with different intensities, namely two “A1g” modes (225 and 498 cm−1) and five “Eg” modes (247, 293, 299, 412 and 613 cm−1). The most representative band present in the synthesised iron oxide nanoparticles was found at 225 cm−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J. Murbe, A. Rechtenback, J. Topfer, Mater. Chem. Phys. 110(2-3), 426–433 (2008)

    Article  Google Scholar 

  2. V. Malik, S. Sen, D.R. Galting, M.G. Josifovska, M. Schmidt, P. Guptasarma, Mater. Res. Express 1(2), 026114 (2014)

    Article  CAS  Google Scholar 

  3. T.S. Ahmadi, Z.L. Wang, T.C. Green, A. Henglein, M.A. Elsayed, Science 272, 5270 (1996)

    Article  Google Scholar 

  4. S. Mitra, S. Das, K. Mandal, S. Chaudhari, Nanotechnology 18, 275608 (2007)

    Article  Google Scholar 

  5. G. Wu, X. Tan, G. Li, C. Hu, J. Alloys Compd. 504, 371 (2010)

    Article  CAS  Google Scholar 

  6. S.F. Hasany, I. Ahmed, J. Rajan, A. Rehman, Nanosci. Nanotechnol. 2, 148 (2012)

    Article  Google Scholar 

  7. S. Bagheri, G. Chandarapa, A. Hamid, S. Bee, Res. J. Chem. Sci. 3, 1 (2013)

    Google Scholar 

  8. S. Shivakumara, T.R. Penki, N. Munichandraiah, Mater. Lett. 131, 100–103 (2014)

    Article  CAS  Google Scholar 

  9. H. Mansour, H. Letifi, R. Bargougoi, Appl. Phys. A Mater. Sci. Process. 123, 787 (2017)

    Article  Google Scholar 

  10. A. Lassoued, M.S. Lassoued, B. Dkhil, A. Gardi, S. Ammar, J. Mol. Struct. 1141, 99 (2017)

    Article  CAS  Google Scholar 

  11. X. Wang, M. Qin, F. Fang, B. Jia, H. Wu, X. Qu, A. Volinsky, Ceram. Int. 44, 4237 (2017)

    Article  Google Scholar 

  12. S. Narang, S. Bahel, J. Ceram. Process. Res. 11, 316 (2010)

    Google Scholar 

  13. M. Sebastian, R. Ubic, H. Jantunen, Int. Mater. Rev. 60, 392 (2015)

    Article  Google Scholar 

  14. D. Joshi, G. Pant, N. Arora, S. Nainwal, Heliyon 4, 10450 (2017)

    Google Scholar 

  15. M. Iacob, C. Tugui, V. Tiron, A. Bele, V. Stelian, T. Vasiliu, M. Cazacu, A.-L. Matricala, C. Racles, Smart Mater. Struct. 26, 105046 (2017)

    Article  Google Scholar 

  16. Q. Chi, T. Ma, J. Dong, Y. Cui, Y. Zhang, C. Zhang, S. Xu, X. Wang, Q. Lei, Sci. Rep. 7, 20 (2017)

    Article  Google Scholar 

  17. J.C. Maxwell, Electricity and Magnetism (Oxford University Press, London, 1873), p. 489

    Google Scholar 

  18. V.S. Sawant, S.S. Shinde, R.J. Deokate, C.H. Bhosale, B.K. Chougule, K.Y. Rajpure, Appl. Surf. Sci. 255(13-14), 6675–6678 (2009)

    Article  CAS  Google Scholar 

  19. R.J. Cava, Dielectric materials for applications in microwave communications. J. Mater. Chem. 11(1), 54–62 (2001)

    Article  CAS  Google Scholar 

  20. J. Kumar, N. Gupta, Int. J. Appl. Electromagn. Mech. 47(1), 263–272 (2015)

    Article  Google Scholar 

  21. M. Hossen, A. K. M. Hossain, International Conference on Informatics, Electronics and Vision, ICIEV, 903 (2012)

  22. M. Akhtar, A. Rahman, A. Bakar, M. Khan, Ceram. Int. 5, 43 (2016)

    Google Scholar 

  23. V. Kumar, S. Chahal, D. Singh, A. Kumar, P. Kumar and K. Asokan, AIP Conf. Proc. 1953, \ (2018)

    Google Scholar 

  24. S. Joshi, M. Kumar, S. Chhoker, G. Srivastava, M. Jewariya, V.N. Singh, J. Mol. Struct. 1076, 55 (2014)

    Article  CAS  Google Scholar 

  25. K. Batoo, S. Kumar, G.L. Chan, Allmuddin, Curr. Appl. Phys. 9, 1072 (2008)

    Article  Google Scholar 

  26. K.P. Jayadevan, T.Y. Tseng, Chem. Inform. 36, 335 (2005)

    Google Scholar 

  27. S. Babay, T. Mhiri, M. Toumi, J. Mol. Struct. 1085, 286–293 (2015)

    Article  CAS  Google Scholar 

  28. D.L.A. De Faria, S.V. Silva, M.T. De Oliveira, J. Raman Spectrosc. 28(11), 873–878 (1997)

    Article  Google Scholar 

  29. R. Bhat, M. Qayoom, G. Dar, B. Want, Improved dielectric, conductivity and magnetic properties of erbium doped α-Fe2O3 nanoparticles. J. Mater. Sci. Mater. Electron. 30, 20914–20934 (2019)

    Article  CAS  Google Scholar 

  30. M.T. Farid, I. Ahmad, S. Aman, M. Kanwal, G. Murtaza, I. Ali, I. Ahmad, M. Ishfaq, Dig. J. Nanometer. Bios. 10, 265 (2015)

    Google Scholar 

  31. J. Papaioannou, G. Patermarakis, H. Karayianni, Electron hopping mechanism in hematite (α-Fe2O3). J. Phys. Chem. Solids 66, 839–844 (2005)

    Article  CAS  Google Scholar 

  32. A. Broese Van Groenou, Mater. Sci. Eng. 3, 317 (1968)

    Article  Google Scholar 

  33. N.F. Mott, J. Non-Cryst. Solids 1, 889 (1968)

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to IUAC, New Delhi and NIT Srinagar for providing Lab facilities. One of the authors, M. Qayoom, would like to acknowledge IUAC, New Delhi for providing JRF fellowship vide reference no IUAC/XIII.7/UFR-63304 and Gazala Mubi for her kind support. Corresponding author G. N. Dar acknowledges DST, Govt. of India, for financial supports vide reference no. DST/TM/WTI/2 K16/248 (G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghulam Nabi Dar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qayoom, M., Shah, K.A., Pandit, A.H. et al. Dielectric and electrical studies on iron oxide (α-Fe2O3) nanoparticles synthesized by modified solution combustion reaction for microwave applications. J Electroceram 45, 7–14 (2020). https://doi.org/10.1007/s10832-020-00219-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-020-00219-2

Keywords

Navigation