Skip to main content
Log in

Structural, optical, magnetic and electrical properties of hematite (α-Fe2O3) nanoparticles synthesized by two methods: polyol and precipitation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Hematite (α-Fe2O3) nanoparticles have been successfully synthesized via two methods: (1) polyol and (2) precipitation in water. The influence of synthesis methods on the crystalline structure, morphological, optical, magnetic and electrical properties were investigated using X-ray diffraction, RAMAN spectroscopy, scanning electron microscopy, transmission electron microscopy, UV–visible diffuse reflectance spectroscopy (UV–vis DRS), superconducting quantum interference device and impedance spectroscopy. The structural properties showed that the obtained hematite α-Fe2O3 nanoparticles with two preparation methods exhibit hexagonal phase with high crystallinity and high-phase stability at room temperature. It was found that the average hematite nanoparticle size is estimated to be 36.86 nm for the sample synthesized by precipitation and 54.14 nm for the sample synthesized by polyol. Moreover, the optical properties showed that the band gap energy value of α-Fe2O3 synthesized by precipitation (2.07 eV) was higher than that of α-Fe2O3 synthesized by polyol (1.97 eV) and they showed a red shift to the visible region. Furthermore, the measurements of magnetic properties indicated a magnetization loop typical of ferromagnetic systems at room temperature. Measurements of electrical properties show higher dielectric permittivity (5.64 × 103) and relaxation phenomenon for α-Fe2O3 issued from the precipitation method than the other sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Ma, J. Teo, L. Mei, Z. Zhong, Q. Li, T. Wang, X. Duan, J. Lianc, W. Zheng, J. Mater. Chem. 22, 11694–11700 (2012)

    Google Scholar 

  2. H. Cui, Y. Liu, W. Ren, Adv. Powder Technol. 24, 93–97 (2013)

    Google Scholar 

  3. H.L. Liu, S.P. Ko, J.H. Wu, M.H. Jung, J.H. Min, J.H. Lee, B.H. An, Y.K. Kim, J. Magn. Magn. Mater. 310, 815–817 (2007)

    Google Scholar 

  4. G.K. Mor, H.E. Prakasam, O.K. Varghese, K. Shankar, C.A. Grimes, Nano Lett. 7, 2356–2364 (2007)

    ADS  Google Scholar 

  5. S.M. El-Sheikh, F.A. Harraz, K.A. Saad, J. Alloys Compd. 487, 716–723 (2009)

    Google Scholar 

  6. M. Mishra, D.M. Chun, Appl. Catal. A Gen. 498, 126–141 (2015)

    Google Scholar 

  7. S. Boumaza, A. Boudjemaa, S. Omeiri, R. Bouarab, A. Bouguelia, M. Trari, Sol. Energy 84, 715–721 (2010)

    ADS  Google Scholar 

  8. M.A. Valenzuela, P. Bosch, J.J. Becerrill, O. Quiroz, A.I. Páez, J. Photochem. Photobiol. A Chem. 148, 177–182 (2002)

    Google Scholar 

  9. X. Zheng, Y. Jia, F. Chai, F. Qu, A. Umar, X. Wu, J. Colloid Interface Sci. 457, 345–352 (2015)

    ADS  Google Scholar 

  10. H. Dong, H. Zhang, Y. Xu, C. Zhao, J. Power Sourc. 300, 104–111 (2015)

    ADS  Google Scholar 

  11. J. Huang, M. Yang, C. Gu, M. Zhai, Y. Sun, J. Liu, Mater. Res. Bull. 46, 1211–1218 (2011)

    Google Scholar 

  12. M. Shahpari, A. Behjat, M. Khajaminian, N. Torabi, Sol. Energy 119, 45–53 (2015)

    ADS  Google Scholar 

  13. D. Walter, Thermochim. Acta 445, 195–199 (2006)

    Google Scholar 

  14. B.T. Hang, D.H. Thang, J. Alloys Compd. 655, 44–49 (2016)

    Google Scholar 

  15. N.V. Long, Y. Yang, C.M. Thi, B.T. Hang, Y. Ca, M. Nogami, Colloid Polym. Sci. 293, 49–63 (2015)

    Google Scholar 

  16. S. Giri, S. Samanta, S. Maji, S. Ganguli, A. Bhaumik, J. Magn. Magn. Mater. 285, 296–302 (2005)

    ADS  Google Scholar 

  17. M. Tadic, D. Markovic, V. Spasojevic, V. Kusigerski, M. Remskar, J. Pirnat, Z. Jaglicic, J. Alloys Compd. 441, 291–296 (2007)

    Google Scholar 

  18. D. Adler, Solid State Phys. 21, 1 (1968)

    ADS  Google Scholar 

  19. M. srivastava, A.K. Ojha, S. Chaubey, J. singh, P.K. Sharma, A.C. Pandey, J. Alloys Compd. 500, 206–210 (2010)

    Google Scholar 

  20. O. Opuchovic, A. Kareiva, Ceram. Int. 41, 4504–4513 (2015)

    Google Scholar 

  21. K. Raja, M.M. Jaculine, M. Jose, S. Verma, A.A.M. Prince, K. Ilangovan, K. Sethusankar, S.J. Das, Superlattices Microstruct. 86, 306–312 (2015)

    ADS  Google Scholar 

  22. Z.N. Kayania, A. Afzala, M.Z. Butta, I. Batoola, S.A.Y. Alia, S. Riaz, S. Naseem, Mater. Today Proc. 2, 5660–5663 (2015)

    Google Scholar 

  23. S.K. Maji, N. Mukherjee, A. Mondal, B. Adhikary, Polyhedron 33, 145–149 (2012)

    Google Scholar 

  24. R. Al-Gaashani, S. Radiman, N. Tabet, A.R. Daud, J. Alloys Compd. 550, 395–401 (2013)

    Google Scholar 

  25. L. Xu, J. Xia, K. Wang, L. Wang, H. Li, H. Xu, L. Huang, M. He, Dalton Trans. 42, 6468–6477 (2013)

    Google Scholar 

  26. S. Liu, Y.H. Sun, P.P. Dong, J.M. Nan, Mater. Sci. Eng. B 202, 15–24 (2015)

    Google Scholar 

  27. B. Tang, G. Wang, L. Zhuo, J. Ge, L. Cui, Inorg. Chem. 45, 5196–5200 (2006)

    Google Scholar 

  28. N.M. Khalil, M.M.S. Wahs, E.E. Saad, J. Ind. Eng. Chem. 21, 1214–1218 (2015)

    Google Scholar 

  29. M. Tadica, M. Panjanb, V. Damnjanovicc, I. Milosevic, Appl. Surf. Sci. 320, 183–187 (2014)

    ADS  Google Scholar 

  30. S. Sivakumar, D. Anusuya, C.P. Khatiwada, J. Sivasubramanian, A. Venkatesan, P. Soundhirarajan, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 128, 69–75 (2014)

    ADS  Google Scholar 

  31. R. Satheesh, K. Vignesh, A. Suganthi, M. Rajarajan, J. Environ. Chem. Eng. 2, 1956–1968 (2014)

    Google Scholar 

  32. M. Farahmandjou, F. Soflaee, Phys. Chem. Res. 3, 193–198 (2015)

    Google Scholar 

  33. K. Supattarasakda, K. Petcharoen, T. Permpool, A. Sirivat, W. Lerdwijitjarud, Powder Technol. 249, 353–359 (2013)

    Google Scholar 

  34. M. Zic, M. Ristic, S. Music, J. Mol. Struct. 924–926, 235–242 (2009)

    ADS  Google Scholar 

  35. S. Shivakumara, T.R. Penki, N. Munichandraiah, Mater. Lett. 131, 100–103 (2014)

    Google Scholar 

  36. B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley, Reading, 1978), p. 102

    Google Scholar 

  37. M. Khan, J. Xu, N. Chen, W. Cao, J. Alloys Compd. 513, 539–545 (2012)

    Google Scholar 

  38. D. Zhu, J. Zhang, J. Song, H. Wang, Z. Yu, Y. Shen, A. Xie, Appl. Surf. Sci. 284, 855–861 (2013)

    ADS  Google Scholar 

  39. H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969)

    Google Scholar 

  40. J.R. Carjaval, in XVth Congress International Union of Crystallography, Proceedings of the Satellite Meeting on Powder Diffraction, Toulouse, 127. (1990)

  41. Y.S. Cho, Y.D. Huh, Bull. Korean Chem. Soc. 30, 1413 (2009)

    Google Scholar 

  42. Q. Wei, Z. Zhang, Z. Li, Q. Zhou, Y. Zhu, J. Phys. D Appl. Phys. 41, 202–302 (2008)

    Google Scholar 

  43. D. Bersani, P.P. Lottici, A. Montenero, J. Raman Spectrosc. 30, 355 (1999)

    ADS  Google Scholar 

  44. D.L.A. de Faria, F.N. Lopes, Vib. Spectrosc. 45, 117–121 (2007)

    Google Scholar 

  45. C. Jorand Sartoretti, B.D. Alexer, R. Solarska, I.A. Rutkowska, J. Augustynski, R. Cerny, J. Phys. Chem. B 109, 13685–13692 (2005)

    Google Scholar 

  46. C. Pérez León, L. Kado, M. Zhang, A.H.E. Müller, J. Raman Spectrosc. 35, 165 (2004)

    ADS  Google Scholar 

  47. M. Tadic, N. Citakovic, M. Panjan, B. Stanojevic, D. Markovic, ,D. Jovanovic, V. Spasojevic, J. Alloys Compd. 543, 118–124 (2012)

    Google Scholar 

  48. D. Wang, C. Cao, S. Xue, H. Zhu, J. Cryst. Growth 277, 238–245 (2005)

    ADS  Google Scholar 

  49. Y.C. Zhang, J.Y. Tang, X.Y. Hu, J. Alloys Compd. 462, 24–28 (2008)

    Google Scholar 

  50. P.P. Sarangi, S.R. Vadera, M.K. Patra, C. Prakash, N.N. Ghosh, J. Am. Ceram. Soc. 92, 2425–2428 (2009)

    Google Scholar 

  51. X. Cao, R. Prozorov, Y. Koltypin, G. Kataby, I. Felner, A. Gedanken, Synthesis of pure amorphous Fe2O3. J. Mater. Res. 12, 402–406 (1997)

    ADS  Google Scholar 

  52. L. Li, G. Li, R.L. Smith, H. Inomata, Chem. Mater. 12, 3705–3714 (2000)

    Google Scholar 

  53. C. Eid, D. Luneau, V. Salles, R. Asmar, Y. Monteil, A. Khoury, A. Brioude, J. Phys. Chem. C. 115, 17643–17646 (2011)

    Google Scholar 

  54. J.C. Papaioannou, G.S. Patermarakis, H.S. Karayianni, J. Phys. Chem. Solids 66, 839–844 (2005)

    ADS  Google Scholar 

  55. K.S. Rao, D.M. Prasad, P.M. Krishna, B. Tilak, KCh. Varadarajulu, Mater. Sci. Eng. B 133, 141–150 (2006)

    Google Scholar 

  56. G. Rahman, O.S. Joo, Int. J. Hydrogen Energy 37, 13989–13997 (2012)

    Google Scholar 

  57. Y.W. Phuan, M.N. Chong, K. Egamparan, B.K. Lee, T. Zhu, E.S. Chan, J. Taiwan Inst. Chem. Eng. 66, 249–257 (2016)

    Google Scholar 

  58. F.L. Formal, N. Tétreault, M. Cornuz, T. Moehl, M. Grätzel, K. Sivula, Chem. Sci. 2, 737–743 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houda Mansour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansour, H., Letifi, H., Bargougui, R. et al. Structural, optical, magnetic and electrical properties of hematite (α-Fe2O3) nanoparticles synthesized by two methods: polyol and precipitation. Appl. Phys. A 123, 787 (2017). https://doi.org/10.1007/s00339-017-1408-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1408-1

Navigation