Skip to main content
Log in

Improved dielectric, conductivity and magnetic properties of erbium doped α-Fe2O3 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work demonstrates the synthesis of erbium (Er3+) ion doped ⍺-Fe2O3 nanoparticles through sol–gel method. The synthesized nanoparticles were thoroughly characterized by various analytical techniques such as XRD, FESEM and EDS, which confirmed that the prepared nanoparticles belong to hexagonal crystal structure with R-3c space group and are well crystalline and highly dense. The as synthesized nanoparticles were studied for dielectric, conductivity and magnetic properties. From dielectric studies, an increase in dielectric constant was observed with the increase in temperature and decrease in frequency. With Er3+ ion doping, a considerable increase in dielectric constant was observed for all doping concentrations. The temperature dependent dc conductivity follows Motts law thereby confirming variable range hopping mechanism in these systems. The room temperature magnetization was observed to increase significantly by incorporating Er3+ ions into ⍺-Fe2O3 lattice. In addition, an exciting result of this study was that the Er3+ ion doped ⍺-Fe2O3 nanoparticles saturate at low applied field of around 10 kOe compared to pure ⍺-Fe2O3 system which does not saturate up to the maximum applied field of 20 kOe. Attaining high saturation magnetization at low applied magnetic field in Er3+ ion doped ⍺-Fe2O3 system could provide a novel platform for medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, R.N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108, 2064–2110 (2008)

    CAS  Google Scholar 

  2. W. Hu, N. Qin, G. Wu, Y. Lin, S. Li, D. Bao, Opportunity of spinel ferrite materials in nonvolatile memory device applications based on their resistive switching performances. J. Am. Chem. Soc. 134, 14658–14661 (2012)

    CAS  Google Scholar 

  3. F.S. DeJesus, A.M.B. Miro, C.A.C. Escobedo, R. Valenzuela, S. Ammar, Mechanosynthesis, crystal structure and magnetic characterization of M-type SrFe12O19. Ceram. Int. I40, 4033–4038 (2014)

    Google Scholar 

  4. A.S. Kupieca, J. Venkate, A. AlHathal, D. Walczyka, A. Farooqi, D. Malina, S.H. Hosseini, B. Tyliszczak, Magnetic nanomaterials and sensors for biological detection. Nanomedicine 12, 2459–2473 (2016)

    Google Scholar 

  5. T. Guo, M. Lin, J. Huang, C. Zhou, W. Tian, H. Yu, X. Jiang, J. Ye, Y. Shi, Y. Xiao, X. Bian, X. Feng, The recent advances of magnetic nanoparticles in medicine. J. Nanomater. (2018). https://doi.org/10.1155/2018/7805147

    Article  Google Scholar 

  6. A.H. Valdes, R.A. Zarate, A.I. Martinez, M.I.P. Canul, M.A.G. Lobato, R. Villaroel, The role of solvents on the physical properties of sprayed iron oxide films. Vacuum 105, 26–32 (2014)

    Google Scholar 

  7. S. Wagloehner, J.N. Baer, S. Kureti, Structure activity relation of iron oxide catalysts in soot oxidation. Appl. Catal. B 147, 1000–1008 (2014)

    CAS  Google Scholar 

  8. A.S. Teja, P.Y. Koh, Synthesis, properties and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth Charact. Mater. 55, 22–45 (2009)

    CAS  Google Scholar 

  9. A. Umar, Y.B. Hahn, Metal Oxide Nanostructures and Their Applications (American Scientific Publishers, Valencia, 2010)

    Google Scholar 

  10. M. Abaker, A. Umar, S. Baskoutas, G.N. Dar, S.A. Zaidi, S.A. Al-Sayari, A. Al- Hajry, S.H. Kim, S.W. Hwang, A highly sensitive ammonia chemical sensor based on α-Fe2O3 nanoellipsoids. J. Phys. D 44, 425401–425407 (2011)

    Google Scholar 

  11. H. Liang, W. Chen, Y. Yao, Z. Wang, Y. Yang, Hydrothermal synthesis, self-assembly and electrochemical performance of ⍺-Fe2O3 microspheres for lithium ion batteries. Ceram. Int. 40, 10283–10290 (2014)

    CAS  Google Scholar 

  12. M. Tadic, M. Panjan, V. Damnjanovi, I. Milosevic, Magnetic properties of hematite (⍺-Fe2O3) nanoparticles prepared by hydrothermal synthesis method. Appl. Surf. Sci. 320, 183–187 (2014)

    CAS  Google Scholar 

  13. M. Tadic, V. Kusigerski, D. Markovic, I. Milosevic, V. Spasojevic, High concentration of hematite nanoparticles in a silica matrix: structural and magnetic properties. J. Magn. Magn. Mater. 321, 12–16 (2009)

    CAS  Google Scholar 

  14. M. Tadic, N. Citakovic, M. Panjan, Z. Stojanovic, D. Markovic, V. Spasojevic, Synthesis, morphology, microstructure and magnetic properties of hematite submicron particles. J. Alloys Compd. 509, 7639–7644 (2011)

    CAS  Google Scholar 

  15. M. Sorescu, R.A. Brand, D.M. Tarabasanu, L. Diamandescu, The crucial role of particle morphology in the magnetic properties of hematite. J. Appl. Phys. 85, 5546–5548 (1999)

    CAS  Google Scholar 

  16. F. Bodker, M.F. Hansen, C.B. Koch, K. Lefmann, S. Morup, Magnetic properties of hematite nanoparticles. Phys. Rev. B. 61, 6826–6839 (2000)

    CAS  Google Scholar 

  17. M.F. Hansen, C.B. Koch, S. Morup, Magnetic dynamics of weakly and strongly interacting hematite nanoparticles. Phys. Rev. B. 62, 1124–1136 (2000)

    CAS  Google Scholar 

  18. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000)

    CAS  Google Scholar 

  19. J.A. Glasscock, P.R.F. Barnes, I.C. Plumb, N. Savvides, Enhancement of photoelectrochemical hydrogen production from hematite thin films by the introduction of Ti and Si. J. Phys. Chem. 111, 16477–16488 (2007)

    CAS  Google Scholar 

  20. G. Goyala, A. Dograb, S. Rayaprol, S.D. Kaushik, V. Siruguri, H. Kishan, Structural and magnetization studies on nanoparticles of Nd doped α-Fe2O3 nanoparticles. Mater. Chem. Phys. 134, 133–138 (2012)

    Google Scholar 

  21. F.S. Freyria, G. Barrera, P. Tiberto, E. Belluso, D. Levy, G. Saracco, P. Allia, E. Garrone, B. Bonelli, Eu doped α-Fe2O3 nanoparticles with modified magnetic properties. J. Solid State Chem. 201, 302–311 (2013)

    CAS  Google Scholar 

  22. R. Satheesh, K. Vignesh, A. Suganthi, M. Rajarajan, Visible light responsive photocatalytic applications of transition metal (M = Cu, Ni and Co) doped α-Fe2O3 nanoparticles. J. Environ. Chem. Eng. 2, 1956–1968 (2014)

    CAS  Google Scholar 

  23. J.S. Justus, S.D.D. Roy, A.M.E. Raj, Influence of lanthanum doping on the structural and optical properties of hematite nanopowders. JASEM 2, 272–277 (2016)

    Google Scholar 

  24. L.E. Mathevula, L.L. Noto, B.K. Mothudi, M.S. Dhlamini, Structural and optical properties of α-Fe2O3 nanoparticles influence by holmium ions. Physica B (2017). https://doi.org/10.1016/j.physb.2017.07.053

    Article  Google Scholar 

  25. R. Bhat, B. Want, A. Firdous, G.N. Dar, Probing of electric and magnetic properties of holmium doped iron oxide nanoparticles. J. Mater. Sci.: Mater. Electron. (2018). https://doi.org/10.1007/s10854-018-0077-y

    Article  Google Scholar 

  26. R. Bazzi, M.A. Flores-Gonzalez, C. Louis, K. Lebbou, C. Dujardin, A. Brenier, W. Zhang, O. Tillement, E. Bernstein, P. Perriat, Synthesis and luminescent properties of sub-5-nm lanthanide oxide nanoparticles. J. Lumin. 102, 445–450 (2003)

    Google Scholar 

  27. E.V. Groman, J.C. Bouchard, C.P. Reinhardt, D.E. Vaccaro, Ultrasmall mixed ferrite colloids as multidimensional magnetic resonance imaging, cell labeling, and cell sorting agents. Bioconj Chem. 18, 1763–1771 (2007)

    CAS  Google Scholar 

  28. B. Issa, I.M. Obaidat, B.A. Albiss, Yousef Haik, Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int. J. Mol. Sci. 14, 21266–21305 (2013)

    CAS  Google Scholar 

  29. K.G. Chandrappa, T.V. Venkatesha, Electrochemical bulk synthesis of Fe3O4 and α-Fe2O3 nanoparticles and its Zn-Co-α-Fe2O3 composite thin films for corrosion protection. Mater. Corros. 63, 1–13 (2012)

    Google Scholar 

  30. E.J. Mittemeijer, U. Welzel, The state of the art of the diffraction analysis of crystallite size and lattice strain. Z. fur Krist. 223, 552–560 (2008)

    CAS  Google Scholar 

  31. G.K. Williamson, R.E. Smallman, Dislocation densities in some annealed and cold-worked metals from measurements on the x-ray debye-scherrer spectrum. Philos. Mag. 1, 34–46 (2006)

    Google Scholar 

  32. G.E. Manger, Porosity and Bulk Density of Sedimentary Rocks, Geological Survey Bulletin (G. E. Manger, Washington, 1963)

    Google Scholar 

  33. J.S. Justus, S.D.D. Roy, A.M.E. Raj, Synthesis and characterization of hematite nanopowders. Mater. Res. Express. 3, 105037–105045 (2016)

    Google Scholar 

  34. Y. Slimania, M.A. Almessiere, E. Hannachi, A. Baykal, A. Manikandan, M. Mumtaz, F. Ben Azzouz, Influence of WO3 nanowires on structural, morphological and flux pinning ability of YBa2Cu3Oy superconductor. Ceram. Int. 45, 2621–2628 (2019)

    Google Scholar 

  35. S. Anand, V.M. Vinosel, M.A. Jenifer, S. Pauline, Dielectric properties, ac electrical conductivity and electric modulus of hematite (α-Fe2O3) nanoparticles. IRJET 4, 358–362 (2017)

    Google Scholar 

  36. S.S.N. Murthy, V.R.K. Murthy, J. Sobhanadri, Anomalous dielectric behavior of some ferrites. J. Appl. Phys. 65, 2159–2161 (1989)

    CAS  Google Scholar 

  37. V.S. Sawant, S.S. Shinde, R.J. Deokate, C.H. Bhosale, B.K. Chougule, K.Y. Rajpure, Effect of calcining temperature on electrical and dielectric properties of cadmium stannate. Appl. Surf. Sci. 255, 6675–6678 (2009)

    CAS  Google Scholar 

  38. P.P. Hankare, R.P. Patil, U.B. Sankpal, S.D. Jadhav, I.S. Mulla, K.M. Jadhav, B.K. Chougule, Magnetic and dielectric properties of nanophase manganese substituted lithium ferrite. J. Magn. Magn. Mater. 321, 3270–3273 (2009)

    CAS  Google Scholar 

  39. K.R. Krishna, D. Ravinder, K.V. Kumar, U.S. Joshi, V.A. Rana, A. Lincon, Dielectric properties of Ni-Zn ferrites synthesized by citrate gel method. WJCMP 2, 57–60 (2012)

    CAS  Google Scholar 

  40. K.K. Bharathi, G. Markandeyulu, C.V. Ramana, Impedance spectroscopic characterization of Sm and Ho doped Ni ferrites. J. Electrochem. Soc. 158, 71–78 (2011)

    Google Scholar 

  41. R.J. Cava, Dielectric materials for applications in microwave communications. J. Mater. Chem. 11, 54–62 (2011)

    Google Scholar 

  42. H. Zheng, W. Weng, G. Han, P. Du, Colossal permittivity and variable range hopping conduction of polarons in Ni0.5Zn0.5Fe2O4 ceramic. J. Phys. Chem. C 117, 12966–12972 (2013)

    CAS  Google Scholar 

  43. N.F. Mott, R.W. Gumey, Electronic Process in Ionic Crystals (Oxford Univ. Press, Oxford, 1948)

    Google Scholar 

  44. I. Ahmad, M.T. Farid, Characterization of cobalt based spinel ferrites with small substitution of gadolinium. WASJ 19, 464–469 (2012)

    CAS  Google Scholar 

  45. M.T. Farid, I. Ahmad, S. Aman, M. Kanwal, G. Murtaza, I. Ali, I. Ahmad, M. Ishfaq, Structural, electrical and dielectric behavior of NixCo1-xNdyFe2-yO4 nano ferrites synthesized by sol-gel method. Dig. J. Nanomater. Biostruct. 10, 265–275 (2015)

    Google Scholar 

  46. N. Rezlescu, E. Rezlescu, Dielectric properties of copper containing ferrites. Phys. Status Solidi A 23, 575–582 (1974)

    CAS  Google Scholar 

  47. T. Ivetic, M.V. Nikolic, M. Slankamenac, M. Zivanov, D. Minic, P.M. Nikolic, M.M. Ristic, Influence of Bi2O3 on microstructure and electrical properties of ZnO-SnO2 ceramics. Sci. Sinter. 39, 229–240 (2007)

    CAS  Google Scholar 

  48. A. Azam, A. Jawad, A.S. Ahmed, M. Chaman, A.H. Naqvi, Structural, optical and transport properties of Al3+ doped BiFeO3 nanopowder synthesized by solution combustion method. J. Alloys. Compd. 509, 2909–2913 (2011)

    CAS  Google Scholar 

  49. M.V. Nikolic, M.P. Slankamenac, N. Nikolic, D.L. Sekulic, O.S. Aleksic, M. Mitric, T. Ivetic, V.B. Pavlovic, P.M. Nikolic, Study of dielectric behavior and electrical properties of hematite α-Fe2O3 doped with Zn. Sci. Sinter. 44, 307–321 (2012)

    CAS  Google Scholar 

  50. X.M. Liu, S.Y. Fu, H.M. Xiao, C.J. Huang, Preparation and characterization of shuttle like α-Fe2O3 nanoparticles by supermolecular template. J. Solid State Chem. 178, 2798–2803 (2005)

    CAS  Google Scholar 

  51. B.J. Daniels, B.M. Clemens, Effect of Cr doping on the Magnetoresistance and saturation field of epitaxial Fe1-xCrx(001)/Cr(001) multilayer. Appl. Phys. Lett. 66, 520–524 (1995)

    CAS  Google Scholar 

  52. P. Li, W.Y. Cui, H.L. Bai, An approach to reduce the antiferromagnetic coupling of antiphase boundaries in half metallic magnetite films. J. Appl. Phys. 114, 213902–213908 (2013)

    Google Scholar 

  53. N. Preksha, N. Dhruv, S. Solanki, R.B. Kulkarni, Effect of sintering temperature and vinca petals extract on structural and magnetic properties of delafossite CuFeO2. AIP Conf. Proc. 1728, 020074-4 (2016)

    Google Scholar 

  54. R. Grossinger, A critical examination of the law of approach to saturation. Phys. Status Solidi A 66, 665–674 (1981)

    Google Scholar 

Download references

Acknowledgements

R. Bhat thanks UGC, Govt. of India, for Mualana Azad National Fellowship (MANF) vide reference number F1-17.1/2015-16/MANF-2015-17-JAM-49627. Corresponding author G. N. Dar acknowledges DST, Govt. of India, for financial support vide reference number DST/TM/WTI/2K16/248 (G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghulam Nabi Dar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, R., Qayoom, M., Dar, G.N. et al. Improved dielectric, conductivity and magnetic properties of erbium doped α-Fe2O3 nanoparticles. J Mater Sci: Mater Electron 30, 20914–20934 (2019). https://doi.org/10.1007/s10854-019-02398-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02398-3

Navigation