Skip to main content
Log in

Electrochemical oxidation and removal of arsenic using water-soluble polymers

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, the electrochemical oxidation of arsenite and its subsequent removal was studied using water-soluble poly[glycidyl methacrylate N-methyl-d-glucamine], P(GMA–NMG), and poly[2-(acryloyloxy)ethyl]trimethylammonium chloride, P(ClAETA). In the first stage, the electroanalysis of arsenic (via oxidation of arsenite to arsenate) by cyclic voltammetry in the presence of water-soluble polymers was conducted. The type of polymer, electrode (gold or platinum), polymer concentration, and pH were evaluated. The study indicated that using P(GMA–NMG) and a gold electrode, oxidation peaks were obtained at approximately +0.5 V versus Ag/AgCl. In the case of P(ClAETA), wide oxidation peaks were obtained at +0.8 V versus Ag/AgCl using a platinum electrode. The optimum concentration for both polymers was 0.05 mol L−1. For P(GMA–NMG), the oxidation potential was influenced by a change of pH. The quantitative oxidation of As(III) to As(V) was conducted using metallic electrodes with higher surface areas. The conversion of arsenic as a function of applied potential was also evaluated. The results showed an efficient oxidation in the presence of both water-soluble polymers. Finally, 60 % of the As(V) could be removed through polymer-enhanced ultrafiltration. The results demonstrated an increase in the removal of pre-oxidized arsenic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cullen RW, Reimer K (1989) Arsenic speciation in the environment. Chem Rev 89:713–764

    Article  CAS  Google Scholar 

  2. Fergusson JF, Gavis J (1972) A review of the arsenic cycle in nature waters. Water Res 6:1259–1274

    Article  Google Scholar 

  3. Welch AH, Westjohn DB, Helsel DR, Wanty RB (2000) Arsenic in ground water of the United States: occurrence and geochemistry. Groundwater 38:589–604

    Article  CAS  Google Scholar 

  4. Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  5. Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235

    Article  CAS  Google Scholar 

  6. Hung DQ, Nekrassova O, Compton RG (2004) Analytical methods for inorganic arsenic in water: a review. Talanta 64:269–277

    Article  CAS  Google Scholar 

  7. Feeney R, Kounaves SP (2002) Voltammetric measurement of arsenic in natural waters. Talanta 58:23–31

    Article  CAS  Google Scholar 

  8. Cavicchioli A, La-Scalea MA, Gutz IGR (2004) Analysis and speciation of traces of arsenic in environmental, food and industrial samples by voltammetry: a review. Electroanalysis 16:697–711

    Article  CAS  Google Scholar 

  9. Gamboa JCM, Cornejo L, Squella JA (2014) Vibrating screen printed electrode of gold nanoparticle-modified carbon nanotubes for the determination of arsenic(III). J Appl Electrochem. doi:10.1007/s10800-014-0727-6

    Google Scholar 

  10. Dai X, Nekrassova O, Hyde ME, Compton RG (2004) Anodic stripping voltammetry of arsenic(III) using gold nanoparticle-modified electrodes. Anal Chem 76:5924–5929

    Article  CAS  Google Scholar 

  11. Majid E, Hrapovic S, Liu Y, Male KB, Luong JHT (2006) Electrochemical determination of arsenite using a gold nanoparticle modified glassy carbon electrode and flow analysis. Anal Chem 78:762–769

    Article  CAS  Google Scholar 

  12. Dai X, Compton RG (2006) Detection of As(III) via oxidation to As(V) using platinum nanoparticle modified glassy carbon electrodes: arsenic detection without interference from copper. Analyst 131:516–521

    Article  CAS  Google Scholar 

  13. Dai X, Compton RG (2005) Gold nanoparticle modified electrodes show a reduced interference by Cu(II) in the detection of As(III) using anodic stripping voltammetry. Electroanalysis 17:1325–1330

    Article  CAS  Google Scholar 

  14. Litter MI, Morgada ME, Bundschuh J (2010) Possible treatments for arsenic removal in Latin American waters for human consumption. Environ Pollut 158:1105–1118

    Article  CAS  Google Scholar 

  15. Sánchez J, Rivas BL (2010) Arsenic extraction from aqueous solution: electrochemical oxidation combined with ultrafiltration membranes and water-soluble polymers. Chem Eng J 165:625–632

    Article  Google Scholar 

  16. Leupin OX, Hug SJ (2005) Oxidation and removal of arsenic(III) from aerated groundwater by filtration through sand and zero-valent iron. Water Res 39:1729–1740

    Article  CAS  Google Scholar 

  17. Rivas BL, Aguirre MC, Pereira E, Bucher C, Royal G, Limosin D, Saint-Aman E, Moutet J-C (2009) Off-line coupled electrocatalytic oxidation and liquid phase polymer based retention (EO-LPR) techniques to remove arsenic from aqueous solutions. Water Res 43:515–521

    Article  CAS  Google Scholar 

  18. Sánchez J, Rivas BL, Pooley SA, Basaez L, Pereira E, Pignot-Paintrand I, Royal G, Saint-Aman E, Bucher C, Moutet J-C (2010) Electrocatalytic oxidation of As(III) to As(V) using noble metal–polymer nanocomposites. Electrochim Acta 55:4876–4882

    Article  Google Scholar 

  19. Rivas BL, Aguirre MC, Pereira E, Bucher C, Moutet J-C, Saint-Aman E, Royal G (2011) Efficient polymers in conjunction with membranes to remove As(V) generated in situ by electrocatalytic oxidation. Polym Adv Technol 22:414–419

    Article  CAS  Google Scholar 

  20. Rivas BL, Pereira ED, Palencia M, Sánchez J (2011) Water-soluble functional polymers in conjunction with membranes to remove pollutant ions from aqueous solutions. Prog Polym Sci 36:294–322

    Article  CAS  Google Scholar 

  21. Moreno-Villoslada I, Rivas BL (2002) Competition of divalent metal ions with monovalent metal ions on the adsorption on water-soluble polymers. J Phys Chem B 106:9708–9711

    Article  CAS  Google Scholar 

  22. Rivas BL, Pooley SA, Luna M (2000) Chelating properties of poly(N-acryloyl piperazine) by liquid-phase polymer-based retention (LPR) technique. Macromol Rapid Commun 21:905–908

    Article  CAS  Google Scholar 

  23. Rivas BL, Pereira ED, Cid R, Geckeler K (2005) Polyelectrolyte-assisted removal of metal ions with ultrafiltration. J Appl Polym Sci 95:1091–1099

    Article  CAS  Google Scholar 

  24. Rivas BL, Moreno-Villoslada I (2000) Effect of the polymer concentration on the interactions of water-soluble polymers with metal ions. Chem Lett 2:166–167

    Article  Google Scholar 

  25. Rivas BL, Moreno-Villoslada I (2000) Poly[acrylamide-co-1-(2-hydroxyethyl) aziridine]: an efficient water-soluble polymer for selective separation of metal ions. J Appl Polym Sci 69:817–824

    Article  Google Scholar 

  26. Toledo L, Rivas BL, Urbano BF, Sánchez J (2013) Novel N-methyl-D-glucamine-based water-soluble polymer and its potential application in the removal of arsenic. Sep Purif Technol 103:1–7

    Article  CAS  Google Scholar 

  27. Sánchez J, Rivas BL, Nazar E, Bryjak M, Kabay N (2013) Boron removal by liquid-phase polymer-based retention technique using poly(glycidyl methacrylate N-methyl D-glucamine). J Appl Polym Sci 162:1541–1545

    Article  Google Scholar 

  28. Ottakam Thotiyl MM, Basit H, Sánchez J, Goyer C, Coche-Guerente L, Dumy P, Sampath S, Labbé P, Moutet J-C (2012) Multilayer assemblies of polyelectrolyte–gold nanoparticles for the electrocatalytic oxidation and detection of arsenic(III). J Colloid Interface Sci 383:130–139

    Article  CAS  Google Scholar 

  29. Rivera JF, Bucher C, Saint-Aman E, Rivas BL, Aguirre MC, Sanchez J, Pignot-Paintrand I, Moutet JC (2013) Removal of arsenite by coupled electrocatalytic oxidation at polymer–ruthenium oxide nanocomposite and polymer-assisted liquid phase retention. Appl Catal B 129:130–136

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the FONDECYT (Project No. 1110079), FONDECYT (postdoctoral Grant No. 3120048), DIUC (211.021.030-1.0), PIA (Anillo ACT-130), REDOC (MINEDUC project UCO1202 at U. de Concepción), and CIPA, Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Sánchez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez, J., Butter, B., Rivas, B.L. et al. Electrochemical oxidation and removal of arsenic using water-soluble polymers. J Appl Electrochem 45, 151–159 (2015). https://doi.org/10.1007/s10800-014-0785-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-014-0785-9

Keywords

Navigation