Skip to main content

Advertisement

Log in

Quercetin attenuates Pseudomonas aeruginosa-induced acute lung inflammation by inhibiting PI3K/AKT/NF-κB signaling pathway

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa is an opportunistic pathogen that commonly causes infections in immunocompromised individuals with significant morbidity and mortality. Quercetin is a natural flavonoid abundantly present in fruits and vegetables, exerting potent anti-inflammatory effects in treatment of various diseases. However, the molecular mechanisms of quercetin in treatment of P. aeruginosa-induced acute lung inflammation are unclear. In this study, we exploited network pharmacology- and molecular docking-based approach to explore the potential mechanisms of quercetin against P. aeruginosa pneumonia, which was further validated via in vivo and in vitro experiments. The in vivo experiments demonstrated that quercetin alleviated the P. aeruginosa-induced lung injury by diminishing neutrophil infiltration and production of proinflammatory cytokines (IL-1β, IL-6, and TNF), which was associated with decreased mortality. Moreover, the quercetin-treated mice displayed decreased phosphorylation levels of PI3K, AKT, IκBα, and NF-κB p65 in lung tissues compared to non-drug-treated mice. Similarly, the in vitro study showed that the phosphorylation of these regulatory proteins and production of the proinflammatory cytokines were impaired in the quercetin-pretreated macrophages upon P. aeruginosa infection. Altogether, this study suggested that quercetin reduced the P. aeruginosa-induced acute lung inflammation by suppressing PI3K/AKT/NF-κB signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  • Ahn HI, Jang HJ, Kwon OK, Kim JH, Oh JH, Kim SH, Oh SR, Han SB, Ahn KS, Park JW (2023) Quercetin attenuates the production of pro-inflammatory cytokines in H292 human lung epithelial cells infected with Pseudomonas aeruginosa by modulating ExoS production. J Microbiol Biotechnol 33:430–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anand David AV, Arulmoli R, Parasuraman S (2016) Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacogn Rev 10:84–89

    Article  PubMed  PubMed Central  Google Scholar 

  • Arango Duque G, Descoteaux A (2014) Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol 5:491

    Article  PubMed  PubMed Central  Google Scholar 

  • Aratani Y (2018) Myeloperoxidase: its role for host defense, inflammation, and neutrophil function. Arch Biochem Biophys 640:47–52

    Article  CAS  PubMed  Google Scholar 

  • Bai D, Ueno L, Vogt PK (2009) Akt-mediated regulation of NFkappaB and the essentialness of NFkappaB for the oncogenicity of PI3K and Akt. Int J Cancer 125:2863–2870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batiha GE, Beshbishy AM, Ikram M, Mulla ZS, El-Hack MEA, Taha AE, Algammal AM, Elewa YHA (2020) The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: quercetin. Foods 9:374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger EA, McClellan SA, Vistisen KS, Hazlett LD (2013) HIF-1alpha is essential for effective PMN bacterial killing, antimicrobial peptide production and apoptosis in Pseudomonas aeruginosa keratitis. PLoS Pathog 9:e1003457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bucior I, Pielage JF, Engel JN (2012) Pseudomonas aeruginosa pili and flagella mediate distinct binding and signaling events at the apical and basolateral surface of airway epithelium. PLoS Pathog 8:e1002616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chanjitwiriya K, Roytrakul S, Kunthalert D (2020) Quercetin negatively regulates IL-1beta production in Pseudomonas aeruginosa-infected human macrophages through the inhibition of MAPK/NLRP3 inflammasome pathways. PLoS ONE 15:e0237752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee M, Anju CP, Biswas L, Anil Kumar V, Gopi Mohan C, Biswas R (2016) Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. Int J Med Microbiol 306:48–58

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Yang J, Shen H, Zhang X, Wang H, Wu G, Qi Y, Wang L, Xu W (2021) Muc5ac production inhibited by decreased lncRNA H19 via PI3K/Akt/NF-kB in asthma. J Asthma Allergy 14:1033–1043

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen K, Li Y, Zhang X, Ullah R, Tong J, Shen Y (2022a) The role of the PI3K/AKT signalling pathway in the corneal epithelium: recent updates. Cell Death Dis 13:513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen LL, Song C, Zhang Y, Li Y, Zhao YH, Lin FY, Han DD, Dai MH, Li W, Pan PH (2022b) Quercetin protects against LPS-induced lung injury in mice via SIRT1-mediated suppression of PKM2 nuclear accumulation. Eur J Pharmacol 936:175352

    Article  CAS  PubMed  Google Scholar 

  • Cho SY, Park SJ, Kwon MJ, Jeong TS, Bok SH, Choi WY, Jeong WI, Ryu SY, Do SH, Lee CS, Song JC, Jeong KS (2003) Quercetin suppresses proinflammatory cytokines production through MAP kinases andNF-kappaB pathway in lipopolysaccharide-stimulated macrophage. Mol Cell Biochem 243:153–160

    Article  CAS  PubMed  Google Scholar 

  • Del Valle DM, Kim-Schulze S, Huang HH, Beckmann ND, Nirenberg S, Wang B, Lavin Y, Swartz TH, Madduri D, Stock A, Marron TU, Xie H, Patel M, Tuballes K, Van Oekelen O, Rahman A, Kovatch P, Aberg JA, Schadt E, Jagannath S et al (2020) An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med 26:1636–1643

    Article  PubMed  PubMed Central  Google Scholar 

  • Deshpande R, Zou C (2020) Pseudomonas aeruginosa induced cell death in acute lung injury and acute respiratory distress syndrome. Int J Mol Sci 21:5356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerin F, Sener U, Erman H, Yilmaz A, Aydin B, Armutcu F, Gurel A (2016) The effects of quercetin on acute lung injury and biomarkers of inflammation and oxidative stress in the rat model of sepsis. Inflammation 39:700–705

    Article  CAS  PubMed  Google Scholar 

  • Grommes J, Soehnlein O (2011) Contribution of neutrophils to acute lung injury. Mol Med 17:293–307

    Article  CAS  PubMed  Google Scholar 

  • Gu M, Su W, Dai J, Wang J, Jia X, Yao J, Zhang G, Zhu Q, Pang Z (2024) Jingfang granule alleviates Pseudomonas aeruginosa-induced acute lung inflammation through suppression of STAT3/IL-17/NF-kappaB pathway based on network pharmacology analysis and experimental validation. J Ethnopharmacol 318:116899

    Article  CAS  PubMed  Google Scholar 

  • Horcajada JP, Montero M, Oliver A, Sorli L, Luque S, Gomez-Zorrilla S, Benito N, Grau S (2019) Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clin Microbiol Rev. https://doi.org/10.1128/CMR.00031-19

    Article  PubMed  PubMed Central  Google Scholar 

  • Hou Y, Nie Y, Cheng B, Tao J, Ma X, Jiang M, Gao J, Bai G (2016) Qingfei Xiaoyan Wan, a traditional Chinese medicine formula, ameliorates Pseudomonas aeruginosa-induced acute lung inflammation by regulation of PI3K/AKT and Ras/MAPK pathways. Acta Pharm Sin B 6:212–221

    Article  PubMed  PubMed Central  Google Scholar 

  • Joseph T, Look D, Ferkol T (2005) NF-kappaB activation and sustained IL-8 gene expression in primary cultures of cystic fibrosis airway epithelial cells stimulated with Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol 288:L471–L479

    Article  CAS  PubMed  Google Scholar 

  • Karruli A, Catalini C, D’Amore C, Foglia F, Mari F, Harxhi A, Galdiero M, Durante-Mangoni E (2023) Evidence-based treatment of Pseudomonas aeruginosa infections: a critical reappraisal. Antibiotics (basel) 12:399

    Article  CAS  PubMed  Google Scholar 

  • Koh AY, Priebe GP, Ray C, Van Rooijen N, Pier GB (2009) Inescapable need for neutrophils as mediators of cellular innate immunity to acute Pseudomonas aeruginosa pneumonia. Infect Immun 77:5300–5310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolb M, Margetts PJ, Anthony DC, Pitossi F, Gauldie J (2001) Transient expression of IL-1beta induces acute lung injury and chronic repair leading to pulmonary fibrosis. J Clin Investig 107:1529–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavoie EG, Wangdi T, Kazmierczak BI (2011) Innate immune responses to Pseudomonas aeruginosa infection. Microbes Infect 13:1133–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lou Y, Wang C, Tang Q, Zheng W, Feng Z, Yu X, Guo X, Wang J (2017) Paeonol Inhibits IL-1beta-Induced Inflammation via PI3K/Akt/NF-kappaB pathways: in vivo and vitro studies. Inflammation 40:1698–1706

    Article  CAS  PubMed  Google Scholar 

  • Lovewell RR, Hayes SM, O’Toole GA, Berwin B (2014) Pseudomonas aeruginosa flagellar motility activates the phagocyte PI3K/Akt pathway to induce phagocytic engulfment. Am J Physiol Lung Cell Mol Physiol 306:L698-707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Z, Liu Y, Li C, Zhang Y, Lin N (2022) Repurposing a clinically approved prescription Colquhounia root tablet to treat diabetic kidney disease via suppressing PI3K/AKT/NF-kB activation. Chin Med 17:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nassef NA, Abd-El Hamid MS, Abusikkien SA, Ahmed AI (2022) Quercetin ameliorates acute lung injury in a rat model of hepatopulmonary syndrome. BMC Complement Med Ther 22:320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen TLA, Bhattacharya D (2022) Antimicrobial activity of quercetin: an approach to its mechanistic principle. Molecules. https://doi.org/10.1186/s12906-022-03785-w

    Article  PubMed  PubMed Central  Google Scholar 

  • Noreen S, Maqbool I, Madni A (2021) Dexamethasone: therapeutic potential, risks, and future projection during COVID-19 pandemic. Eur J Pharmacol 894:173854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouyang J, Sun F, Feng W, Sun Y, Qiu X, Xiong L, Liu Y, Chen Y (2016) Quercetin is an effective inhibitor of quorum sensing, biofilm formation and virulence factors in Pseudomonas aeruginosa. J Appl Microbiol 120:966–974

    Article  CAS  PubMed  Google Scholar 

  • Ouyang J, Feng W, Lai X, Chen Y, Zhang X, Rong L, Sun F, Chen Y (2020) Quercetin inhibits Pseudomonas aeruginosa biofilm formation via the vfr-mediated lasIR system. Microb Pathog 149:104291

    Article  CAS  PubMed  Google Scholar 

  • Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:e47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang Z, Lin TJ (2023) Mice with double knockout of Egr-1 and RCAN1 exhibit reduced inflammation during Pseudomonas aeruginosa lung infection. Immunobiology 228:152377

    Article  CAS  PubMed  Google Scholar 

  • Pang Z, Zhu Q (2021) Traditional Chinese medicine is an alternative therapeutic option for treatment of Pseudomonas aeruginosa infections. Front Pharmacol 12:737252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z (2019a) Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 37:177–192

    Article  CAS  PubMed  Google Scholar 

  • Pang Z, Raudonis R, McCormick C, Cheng Z (2019b) Early growth response 1 deficiency protects the host against pseudomonas aeruginosa lung infection. Infect Immun. https://doi.org/10.1128/IAI.00678-19

    Article  PubMed  PubMed Central  Google Scholar 

  • Phuong MS, Hernandez RE, Wolter DJ, Hoffman LR, Sad S (2021) Impairment in inflammasome signaling by the chronic Pseudomonas aeruginosa isolates from cystic fibrosis patients results in an increase in inflammatory response. Cell Death Dis 12:241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pundir S, Martin MJ, O’Donovan C (2017) UniProt protein knowledgebase. Methods Mol Biol 1558:41–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi S, Xin Y, Guo Y, Diao Y, Kou X, Luo L, Yin Z (2012) Ampelopsin reduces endotoxic inflammation via repressing ROS-mediated activation of PI3K/Akt/NF-kappaB signaling pathways. Int Immunopharmacol 12:278–287

    Article  CAS  PubMed  Google Scholar 

  • Qin S, Li J, Zhou C, Privratsky B, Schettler J, Deng X, Xia Z, Zeng Y, Wu H, Wu M (2020) SHIP-1 regulates phagocytosis and M2 polarization through the PI3K/Akt-STAT5-Trib1 circuit in Pseudomonas aeruginosa infection. Front Immunol 11:307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rebhan M, Chalifa-Caspi V, Prilusky J, Lancet D (1997) GeneCards: integrating information about genes, proteins and diseases. Trends Genet 13:163

    Article  CAS  PubMed  Google Scholar 

  • Reynolds D, Kollef M (2021) The epidemiology and pathogenesis and treatment of Pseudomonas aeruginosa Infections: An update. Drugs 81:2117–2131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ru J, Li P, Wang J, Zhou W, Li B, Huang C, Li P, Guo Z, Tao W, Yang Y, Xu X, Li Y, Wang Y, Yang L (2014) TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform 6:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Sadikot RT, Zeng H, Joo M, Everhart MB, Sherrill TP, Li B, Cheng DS, Yull FE, Christman JW, Blackwell TS (2006) Targeted immunomodulation of the NF-kappaB pathway in airway epithelium impacts host defense against Pseudomonas aeruginosa. J Immunol 176:4923–4930

    Article  CAS  PubMed  Google Scholar 

  • Sadikot RT, Zeng H, Azim AC, Joo M, Dey SK, Breyer RM, Peebles RS, Blackwell TS, Christman JW (2007) Bacterial clearance of Pseudomonas aeruginosa is enhanced by the inhibition of COX-2. Eur J Immunol 37:1001–1009

    Article  CAS  PubMed  Google Scholar 

  • Santana FPR, Thevenard F, Gomes KS, Taguchi L, Camara NOS, Stilhano RS, Ureshino RP, Prado CM, Lago JHG (2021) New perspectives on natural flavonoids on COVID-19-induced lung injuries. Phytother Res 35:4988–5006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawa T (2014) The molecular mechanism of acute lung injury caused by Pseudomonas aeruginosa: from bacterial pathogenesis to host response. J Intensive Care 2:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider T, Issekutz AC (1996) Quantitation of eosinophil and neutrophil infiltration into rat lung by specific assays for eosinophil peroxidase and myeloperoxidase. Application in a Brown Norway rat model of allergic pulmonary inflammation. J Immunol Methods 198:1–14

    Article  CAS  PubMed  Google Scholar 

  • Schultheiss C, Willscher E, Paschold L, Gottschick C, Klee B, Henkes SS, Bosurgi L, Dutzmann J, Sedding D, Frese T, Girndt M, Holl JI, Gekle M, Mikolajczyk R, Binder M (2022) The IL-1beta, IL-6, and TNF cytokine triad is associated with post-acute sequelae of COVID-19. Cell Rep Med 3:100663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stern A, Skalsky K, Avni T, Carrara E, Leibovici L, Paul M (2017) Corticosteroids for pneumonia. Cochrane Database Syst Rev 12:CD007720

    PubMed  Google Scholar 

  • Subramani R, Narayanasamy M, Feussner KD (2017) Plant-derived antimicrobials to fight against multi-drug-resistant human pathogens. 3 Biotech 7:172

    Article  PubMed  PubMed Central  Google Scholar 

  • Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, Jensen LJ, von Mering C (2017) The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 45:D362–D368

    Article  CAS  PubMed  Google Scholar 

  • Tak PP, Firestein GS (2001) NF-kappaB: a key role in inflammatory diseases. J Clin Investig 107:7–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vipin C, Mujeeburahiman M, Ashwini P, Arun AB, Rekha PD (2019) Anti-biofilm and cytoprotective activities of quercetin against Pseudomonas aeruginosa isolates. Lett Appl Microbiol 68:464–471

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Yan Y, Pathak JL, Hong W, Zeng J, Qian D, Hao B, Li H, Gu J, Jaspers RT, Wu G, Shao M, Peng G, Lan H (2023) Quercetin prevents osteoarthritis progression possibly via regulation of local and systemic inflammatory cascades. J Cell Mol Med 27:515–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood SJ, Kuzel TM, Shafikhani SH (2023) Pseudomonas aeruginosa: infections, animal modeling, and therapeutics. Cells 12:199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie L, Xie H, Chen C, Tao Z, Zhang C, Cai L (2019) Inhibiting the PI3K/AKT/NF-kappaB signal pathway with nobiletin for attenuating the development of osteoarthritis: in vitro and in vivo studies. Food Funct 10:2161–2175

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Duan C, Kuang Z, Hao Y, Jeffries JL, Lau GW (2013) Pseudomonas aeruginosa pyocyanin activates NRF2-ARE-mediated transcriptional response via the ROS-EGFR-PI3K-AKT/MEK-ERK MAP kinase signaling in pulmonary epithelial cells. PLoS ONE 8:e72528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Bao L, Cao S, Pang B, Zhang J, Zhang Y, Chen M, Wang Y, Sun Q, Zhao R, Guo S, Sun J, Cui X (2024) Pharmacological effects and mechanism of Maxing Shigan decoction in the treatment of Pseudomonas aeruginosa pneumonia. J Ethnopharmacol 320:117424

    Article  CAS  PubMed  Google Scholar 

  • Yao J, Zhang Y, Wang XZ, Zhao J, Yang ZJ, Lin YP, Sun L, Lu QY, Fan GJ (2022) Flavonoids for treating viral acute respiratory tract infections: a systematic review and meta-analysis of 30 randomized controlled trials. Front Public Health 10:814669

    Article  PubMed  PubMed Central  Google Scholar 

  • Zakhour J, Sharara SL, Hindy JR, Haddad SF, Kanj SS (2022) Antimicrobial treatment of Pseudomonas aeruginosa severe sepsis. Antibiotics (basel) 11:1432

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10:1523

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhuang T, Hu M, Wang J, Mei L, Zhu X, Zhang H, Jin F, Shao J, Wang T, Wang C, Niu X, Wu D (2022) Sodium houttuyfonate effectively treats acute pulmonary infection of Pseudomonas aeruginosa by affecting immunity and intestinal flora in mice. Front Cell Infect Microbiol 12:1022511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (Grant No.: 82002112).

Author information

Authors and Affiliations

Authors

Contributions

XJ contributed to writing–original draft, investigation and formal analysis. MG contributed to writing–original draft, investigation and formal analysis. JD contributed to investigation and formal analysis. JW contributed to writing–review and editing. YZ contributed to methodology, supervision, project administration and writing–review and editing. ZP contributed to conceptualization, methodology, data curation, formal analysis, funding acquisition and writing–review and editing.

Corresponding authors

Correspondence to Yingying Zhang or Zheng Pang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval

The animal experiment protocol was approved by the Animal Ethics Committee of Shandong University of Traditional Chinese Medicine (protocol number: SDUTCM20210707002) in accordance with the Provision and General Recommendation of Chinese Experimental Animals Administration Legislation.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 38632 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, X., Gu, M., Dai, J. et al. Quercetin attenuates Pseudomonas aeruginosa-induced acute lung inflammation by inhibiting PI3K/AKT/NF-κB signaling pathway. Inflammopharmacol 32, 1059–1076 (2024). https://doi.org/10.1007/s10787-023-01416-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-023-01416-5

Keywords

Navigation