Skip to main content
Log in

Multidirectional Quantum Controlled Teleportation in Noisy Environment

  • RESEARCH
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The present paper aims to propose a theoretical novel protocol for implementing five-party Multidirectional Quantum Controlled Teleportation (MQCT) of a one-qubit state. Utilizing the entangled state of eleven-qubit as a quantum channel, one sender teleports to and receives different quantum information from distant three receivers simultaneously under the supervision of the fifth party as the controller. Hadamard gates, Controlled-Not (CNOT) gates and Controlled-Z gates (CZ) are used to construct the quantum channel. The proposed protocol is found to be more efficient as it has minimum resource consumption than most existing protocols. The protocol has been examined in noisy channels and the results show that the fidelities under Amplitude Damping Noise (ADN) and Phase Damping Noise (PDN) depend only upon the amplitude coefficients and the decoherence noisy rate. The proposed protocol has also been analyzed and found to be secure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Yang, K., Huang, L., Yang, W., Song, F.: Quantum teleportation via GHZ-like state. Int. J. Theor. Phys. 48, 516–521 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cao, L.Y., Xue, S.B., Jiang, M.: Teleportation of an unknown four-qubit cluster state based on cluster states with minimum resource. IEEE Access 8, 81447–81457 (2020)

    Article  Google Scholar 

  4. Sadeghi Zadeh, M.S., Houshmand, M., Aghababa, H.: Bidirectional teleportation of a two-qubit state by using eight-qubit entangled state as a quantum channel. Int. J. Theor. Phys. 56, 2101–2112 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Zhang, B., Liu, X.T., Wang, J., Tang, C.J.: Quantum teleportation of an arbitrary N-qubit state via GHZ-like states. Int. J. Theor. Phys. 55, 1601–1611 (2016)

    Article  MATH  Google Scholar 

  6. Wang, L.Q., Zha, X.W.: Two schemes of teleportation one-particle state by a three-particle GHZ state. Optics Commun. 283(20), 4118–4121 (2010)

    Article  ADS  Google Scholar 

  7. Yu, L.Z., Zhu, L.Z.: Probabilistic Teleportation of Two-particle Entangled State via a Cluster State. 30(5), 580-584 (2009)

  8. Tian, D., Tao, Y., Qin, M.: Teleportation of an arbitrary two-qudit state based on the non-maximally four-qudit cluster state. Sci. China, Ser. G 51, 1523–1528 (2008)

    Article  Google Scholar 

  9. Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Perfect teleportation of an arbitrary three-qubit state by using W-class states. Int. J. Theor. Phys. 50, 3225–3229 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Tsai, C.W., Hwang, T.: Teleportation of a pure EPR state via GHZ-like state. Int. J. Theor. Phys. 49(8), 1969–1975 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Huelga, S.F., Vaccaro, J.A., Chefles, A., Plenio, M.B.: Quantum remote control: teleportation of unitary operations. Phys. Rev. A 63(4), 042303 (2001)

    Article  ADS  MATH  Google Scholar 

  12. Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84(2), 621 (2012)

    Article  ADS  Google Scholar 

  13. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information. Am J Phys 70(5), 558–559 (2002)

    Article  ADS  Google Scholar 

  14. Karimipour, V., Rad, M.S., Asoudeh, M.: Perfect quantum state transfer in two-and three-dimensional structures. Phys. Rev. A 85(1), 010302 (2012)

    Article  ADS  Google Scholar 

  15. Gordon, G., Rigolin, G.: Generalized teleportation protocol. Phys Rev A 73(4), 042309 (2006)

    Article  ADS  Google Scholar 

  16. Karlsson, A., Bournnane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58(6), 4394–4400 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  17. Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72(2), 022338 (2005)

    Article  ADS  Google Scholar 

  18. Man, Z.X., Xia, Y.J., An, N.B.: Genuine multiqubit entanglement and controlled teleportation. Phys. Rev. A 75(5), 052306 (2007)

    Article  ADS  Google Scholar 

  19. Gao, T., Yan, F.L., Li, Y.C.: Optimal controlled teleportation. Europhys. Lett. 84(5), 50001 (2008)

    Article  ADS  Google Scholar 

  20. Li, X.H., Ghose, S.: Control power in perfect controlled teleportation via partially entangled channels. Phys. Rev. A 90(5), 052305 (2014)

    Article  ADS  Google Scholar 

  21. Naseri, M., Raji, M.A., Hantehzadeh, M.R., Farouk, A., Boochani, A., Solaymani, S.: A scheme for secure quantum communication network with authentication using GHZ-like states and cluster states controlled teleportation. Quantum Inf. Process. 14, 4279–4295 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Hassanpour, S., Houshmand, M.: Bidirectional teleportation of a pure EPR state by using GHZ states. Quantum Inf. Process. 15(2), 905–912 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Kazemikhah, P., Aghababa, H.: Bidirectional quantum teleportation of an arbitrary number of qubits by using four qubit cluster state. Int. J. Theor. Phys. 60, 378–386 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Verma, V.: Bidirectional quantum teleportation by using two GHZ-states as the quantum channel. IEEE Commun. Lett. 25(3), 936–939 (2020)

    Article  Google Scholar 

  25. Mafi, Y., Kazemikhah, P., Ahmadkhaniha, A., Aghababa, H., Kolahdouz, M.: Bidirectional quantum teleportation of an arbitrary number of qubits over a noisy quantum system using 2 n Bell states as quantum channel. Opt. Quant. Electron. 54(9), 568 (2022)

    Article  Google Scholar 

  26. Zha, X.W., Zou, Z.C., Qi, J.X., Song, H.Y.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52, 1740–1744 (2013)

    Article  MathSciNet  Google Scholar 

  27. Chen, Y.: Bidirectional controlled quantum teleportation by using five-qubit entangled state. Int. J. Theor. Phys. 53, 1454–1458 (2014)

    Article  MATH  Google Scholar 

  28. Wang, M., Li, H.S.: Bidirectional quantum teleportation using a five-qubit cluster state as a quantum channel. Quantum Inf. Process. 21(2), 44 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Zhou, R.G., Xu, R., Lan, H.: Bidirectional quantum teleportation by using six-qubit cluster state. IEEE Access 7, 44269–44275 (2019)

    Article  Google Scholar 

  30. Huo, G., Zhang, T., Zha, X., Zhang, X., Zhang, M.: Controlled asymmetric bidirectional quantum teleportation of two-and three-qubit states. Quantum Inf. Process. 20, 1–11 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hong, W.Q.: Asymmetric bidirectional controlled teleportation by using a seven-qubit entangled state. Int. J. Theor. Phys. 55, 384–387 (2016)

    Article  MATH  Google Scholar 

  32. Zhang, D., Zha, X.W., Li, W., Yu, Y.: Bidirectional and asymmetric quantum controlled teleportation via maximally eight-qubit entangled state. Quantum Inf. Process. 14, 3835–3844 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Zhang, X., Jin, W., Zeng, H., Feng, J., Yang, C.: Cost-Effective Bidirectional Controlled Quantum Teleportation Scheme by Using Nine-Qubit Entangled State. Int. J. Theor. Phys. 62(5), 95–102 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  34. Choudhury, B.S., Samanta, S.: Asymmetric bidirectional 3⇔ 2 qubit teleportation protocol between Alice and Bob via 9-qubit cluster state. Int. J. Theor. Phys. 56, 3285–3296 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, Y.H., Nie, L.P.: Bidirectional controlled teleportation by using a five-qubit composite GHZ-Bell state. Int. J. Theor. Phys. 52, 1630–1634 (2013)

    Article  MathSciNet  Google Scholar 

  36. Duan, Y.J., Zha, X.W., Sun, X.M., Xia, J.F.: Bidirectional quantum controlled teleportation via a maximally seven-qubit entangled state. Int. J. Theor. Phys. 53, 2697–2707 (2014)

    Article  MATH  Google Scholar 

  37. Li, Y.H., Jin, X.M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15, 929–945 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Zhou, R.G., Zhang, Y.N., Xu, R., Qian, C., Hou, I.: Asymmetric bidirectional controlled teleportation by using nine-qubit entangled state in a noisy environment. IEEE Access 7, 75247–75264 (2019)

    Article  Google Scholar 

  39. Zhou, R.G., Qian, C., Xu, R.: A novel protocol for bidirectional controlled quantum teleportation of two-qubit states via seven-qubit entangled state in a noisy environment. Int. J. Theor. Phys. 59, 134–148 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sarvaghad-Moghaddam, M., Ramezani, Z., Amiri, I.S.: Bidirectional controlled quantum teleportation using the eight-qubit quantum channel in noisy environments. Int. J. Theor. Phys. 59, 3156–3173 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  41. Jiang, S.X., Zhou, R.G., Xu, R., Luo, G.: Cyclic hybrid double-channel quantum communication via Bell-state and GHZ-state in noisy environments. IEEE Access 7, 80530–80541 (2019)

    Article  Google Scholar 

  42. Zhou, R.G., Ling, C.: Asymmetric Cyclic Controlled Quantum Teleportation by Using Nine-Qubit Entangled State. Int. J. Theor. Phys. 60(9), 3435–3459 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  43. Mafi, Y., Kazemikhah, P., Ahmadkhaniha, A.: Bidirectional quantum teleportation of an arbitrary number of qubits over a noisy quantum system using 2 n Bell states as quantum channel. Opt Quantum Electron 54(9), 1–13 (2022)

    Article  Google Scholar 

  44. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Phys. Today 54(2), 60 (2001)

    Google Scholar 

  46. Bennett, C.H., Brassard, G., Ekert, A.K.: Quantum cryptography. Scic Am. 267(4), 50–57 (1992)

    Article  Google Scholar 

  47. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  48. Yuan, H., Liu, Y.M., Zhang, W., Zhang, Z.J.: Optimizing resource consumption, operation complexity and efficiency in quantum-state sharing. J. Phys. B At. Mol. Opt. Phys. 41(14) (2008)

  49. Liang, X.T.: Classical information capacities of some single qubit quantum noisy channels. Commun. Theor. Phys. 39(5), 537–542 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  50. Choudhury, B.S., Samanta, S.: Asymmetric bidirectional quantum state exchange between Alice and Bob through a third party. Optik 231, 166435 (2021)

    Article  ADS  Google Scholar 

  51. Kazemikhah, P., Tabalvandani, M.B., Mafi, Y., Aghababa, H.: Asymmetric bidirectional controlled quantum teleportation using eight qubit cluster state. Int. J. Theor. Phys. 61(2) (2022)

  52. Zhang, D., Zha, X.W., Duan, Y.J.: Bidirectional and asymmetric quantum controlled teleportation. Int. J. Theor. Phys. 54(5), 1711–1719 (2015)

    Article  MATH  Google Scholar 

  53. Kaur, S., Gill, S.: Asymmetric controlled quantum teleportation via eight-qubit entangled state in a noisy environment. Int. J. Theor. Phys. 62(2), 31 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  54. Kaur, S., Lal, J., Gill, S.: Bidirectional quantum controlled teleportation of unique four-qubit states by newly entangled 15-qubit state. Opt. Quant. Electron. 55(7) (2023). https://doi.org/10.1007/s11082-023-04829-2

Download references

Funding

There was no support from any organization for the work submitted by the authors.

Author information

Authors and Affiliations

Authors

Contributions

Each author contributed equally to the study and approved the final version of the manuscript.

Corresponding author

Correspondence to Savita Gill.

Ethics declarations

Ethical Approval

Not applicable.

Competing interests

There are no conflicts of interest reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

To maintain the paper structure, the Appendix contains all possible measurements and unitary operations.

Table 2 Measurement outcomes and associated collapsed states
Table 3 Based on measurement result of Bob, Charlie and David, \({\left|{\phi }^{+}\right.\rangle }_{X{B}_{1}},{\left|{\phi }^{+}\right.\rangle }_{Y{C}_{1}},{\left|{\phi }^{+}\right.\rangle }_{Z{D}_{1}}\) this table contains measurement results of Alice and their associated collapsed states
Table 4 Based on measurement result of Bob, Charlie and David \({\left|{\phi }^{+}\right.\rangle }_{X{B}_{1}},{\left|{\phi }^{+}\right.\rangle }_{Y{C}_{1}},{\left|{\phi }^{+}\right.\rangle }_{Z{D}_{1}}\), this table shows measurement outcomes of Alice and Candy and their associated unitary operations

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, S., Priyanka, Lal, J. et al. Multidirectional Quantum Controlled Teleportation in Noisy Environment. Int J Theor Phys 62, 249 (2023). https://doi.org/10.1007/s10773-023-05472-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05472-z

Keywords

Navigation