Skip to main content

Advertisement

Log in

A Novel Neural Network Based on Quantum Computing

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Since the first quantum neural network based on quantum computing was proposed by famous scholar Kak, much attention has been taken focus on designing new quantum neural network models. In this paper, a novel efficient quantum feed-forward neural network based on quantum computing is established, which adopts genetic algorithm to improve the traditional back propagation algorithm in parameters learning process. We clearly show the mathematical process of the new proposed quantum network model and improved algorithm. The experimental results of MATLAB simulations show that the new network model which makes the best use of fast quantum neural computation does a better job in function approximation and prediction of educational short video’s spreading capacity than traditional back propagation neural network, and the improved algorithm is more efficient than common back propagation algorithm in the proposed quantum network model. Our model can be widely used in weather prediction, handwriting recognition, speech recognition, and other aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kaastra, I., Boyd, M.: Designing a neural network for forecasting financial and economic time series. Neurocomputing. 10(3), 215–236 (1996)

    Google Scholar 

  2. Guan, S. Y., Meng, C., Xie, Y., et al.: Deformable cardiovascular image registration via multi-channel convolutional neural network. IEEE Access. 7(99), 17524–17534 (2019)

    Google Scholar 

  3. Murakami, H., Katsunuma, R., Oba, K., et al.: Neural networks for mindfulness and emotion suppression. PLOS ONE 10(6), e0128005 (2015)

    Google Scholar 

  4. Tang, J., Tang, Z.B., Zhou, X., et al.: Enhancing convolutional neural network scheme forrheumatoid arthritis grading with limited clinical data. Chin. Phys. B. 28(3), 038701 (2019)

    ADS  Google Scholar 

  5. Ali, M.S.: Stability analysis of Markovian jumping stochastic Cohen-Grossberg neural networks with discrete and distributed time varying delays. Chin. Phys. B. 23 (6), 060702 (2014)

    Google Scholar 

  6. Huang, X, Jin, H, Zhang, Y.: Risk assessment of earthquake network public opinion based on global search BP neural network. PLOS ONE 14(3), e0212839 (2019)

    Google Scholar 

  7. An, R, Zhang, J, Kong, W., et al.: Application of artificial neural networks to the inversion of positron lifetime spectrum. Chin. Phys. B. 21(11), 117803 (2012)

    ADS  Google Scholar 

  8. Li, X. Y., Hu, P.: Research about the crisis early-warning for China’s stock market with back propagation neural network. In: 5th International Institute of Statistics and Management Engineering Symposium 2012: Data-Driven Management Science under Developing 280–286 (2012)

  9. Rumelhart, D.E, Hinton, G.E., et al.: Learning representations by back-propagating errors. Nature. 323, 533–536 (1986)

    ADS  MATH  Google Scholar 

  10. Yan, J.H., Bai, X.H., Zheng, Q.Y., et al.: No-reference image quality assessment based on AdaBoost BP neural network in wavelet domain. Journal of Systems Engineering and Electronics 30(2), 5–19 (2019)

    Google Scholar 

  11. Sadeghi, B. H. M.: A BP-neural network predictor model for plastic injection molding process. Journal of Materials Processing Technology 103(3), 411–416 (2000)

    Google Scholar 

  12. Liu, J., Chen, Y., Lan, L., et al.: Prediction of rupture risk in anterior communicating artery aneurysms with a feed-forward artificial neural network. European Radiology. 28(8), 1–8 (2018)

    Google Scholar 

  13. Niu, X. F., Zhang, J. Z., Xie, S. C., Chen, B. Q.: A practical e-payment protocol based on quantum multi-proxyblind signature. Commun. Theor. Phys. 70(11), 23–27 (2018)

    ADS  Google Scholar 

  14. Wang, T. Y., Cai, X. Q., Zhang, R. L.: Security of a sessional blind signature based on quantum cryptograph. Quant. Inf. Process. 13(8), 1677–1685 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Xu, G. B.: Novel quantum proxy signature without entanglement. Int. J. Theor. Phys. 54(8), 2605–2612 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21(6-7), 467–488 (1982)

    MathSciNet  Google Scholar 

  17. Shor, P. W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science 124–134 (1994)

  18. Grover, L. K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing 212–219. ACM Press, New York (1996)

  19. Hales, L., Hallgren, S.: An improved quantum Fourier transform algorithm and applications. Foundations of Computer Science Annual Symposium on 9(2), 515–525 (2000)

    MathSciNet  Google Scholar 

  20. Luo, Z., Ma, Y., Liu, C., et al.: Efficient reconstruction of CAS-CI-Type wave functions for a DMRG stateusing quantum information theory and a genetic algorithm. Journal of Chemical Theory & Computation 13(10), 4699 (2017)

    Google Scholar 

  21. Kak, S.: On quantum neural computing. Inform. Sci. 83, 143–160 (1995)

    Google Scholar 

  22. Narayanan, A., Menneer, T.: Quantum artificial neural network architectures and components. Information Sciences. 128(3), 231–255 (2000)

    MathSciNet  MATH  Google Scholar 

  23. Ganjefar, S., Tofighi, M., Karami, H. R.: Fuzzy wavelet plus quantum neural network as a design base for power system stability enhancement. Neural Networks. 71 (C), 172–181 (2015)

    Google Scholar 

  24. Liu, M., Yang, G., Xie, H.: Method of computer-generated hologram compression and transmission using quantum back-propagation neural network. Optical Engineering 56(2), 023104 (2017)

    ADS  Google Scholar 

  25. Kaur, R., Sharma, R.K., Kumar, P.: An efficient speaker recognition using quantum neural network. Modern Physics Letters B. 32(31), 1850384 (2018)

    ADS  Google Scholar 

  26. Torlai, G., Mazzola, G., Carrasquilla, J., et al.: Neural-network quantum state tomography. Nat. Phys. 14(5), 447–450 (2018)

    Google Scholar 

  27. Zhou, R. G., Ding, Q. L.: Quantum M-P neural network. Int. J. Theor. Phys. 46(12), 3209–3215 (2007)

    MathSciNet  MATH  Google Scholar 

  28. Zhou, R. G.: Quantum competitive neural network. Int. J. Theor. Phys. 49(1), 110–120 (2010)

    MATH  Google Scholar 

  29. Zhou, R. G., Wang, H. A., Wu, Q., et al.: Quantum associative neural network with nonlinear search algorithm. Int. J. Theor. Phys. 51(3), 705–723 (2012)

    MATH  Google Scholar 

  30. Altman, C., Pykacz, J., Zapatrin, R. R.: Superpositional quantum network topologies. Int. J. Theor. Phys. 43(10), 2029–2040 (2004)

    MathSciNet  MATH  Google Scholar 

  31. Luo, D., Clark, B.K.: Backflow transformations via neural networks for quantum many-body wave-functions. Phys. Rev. Lett. 122(22), 226401 (2019)

    ADS  Google Scholar 

  32. Bonnell, G., Papini, G.: Quantum neural network. Int. J. Theor. Phys. 36 (12), 2855–2875 (1997)

    MathSciNet  MATH  Google Scholar 

  33. Purushothaman, G., Karayiannis, N. B.: Quantum neural networks (QNNs): inherently fuzzy feedforward neural networks. IEEE Trans. Neural Netw. 8(3), 679–693 (1997)

    Google Scholar 

  34. Zhou, J., Gan, Q., Krzyzak, A., et al.: Recognition of handwritten numerals by Quantum Neural Network with fuzzy features. Int. J. Document Anal. Recogn. 2 (1), 30–36 (1999)

    Google Scholar 

  35. Matsui, N., Kouda, N., Nishimura, H.: Neural network based on QBP and its performance. Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks 3, 247–252 (2000)

    Google Scholar 

  36. Li, P. C., Li, S. Y.: Learning algorithm and application of quantum BP neural networks based on universal quantum gates. J. Sys. Eng. Electronics 19(1), 167–174 (2008)

    MATH  Google Scholar 

  37. Xiang, W., Li, F., Wang, J., et al.: Quantum weighted gated recurrent unit neural network and its application in performance degradation trend prediction of rotating machinery. Neurocomputing 313, 85–95 (2018)

  38. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  39. Zhang, L., Sun, Z., Zhang, C., et al.: Numerical investigation of the dynamic responses of long-span bridges with consideration of the random traffic flow based on the intelligent ACO-BPNN model. IEEE Access 6, 28520–28529 (2018)

    Google Scholar 

Download references

Acknowledgements

We would like to thank experts and journal editors who reviewed this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bu-Qing Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, BQ., Niu, XF. A Novel Neural Network Based on Quantum Computing. Int J Theor Phys 59, 2029–2043 (2020). https://doi.org/10.1007/s10773-020-04475-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04475-4

Keywords

Navigation