Skip to main content
Log in

A review of convolutional neural network architectures and their optimizations

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

The research advances concerning the typical architectures of convolutional neural networks (CNNs) as well as their optimizations are analyzed and elaborated in detail in this paper. This paper proposes a typical approach to classifying CNNs architecture based on modules in order to accommodate more new network architectures with multiple characteristics that make them difficult to rely on the original classification method. Through the pros and cons analysis of diverse network architectures and their performance comparisons, six types of typical CNNs architectures are analyzed and explained in detail. The CNNs architectures intrinsic characteristics is also explored. Moreover, this paper provides a comprehensive classification of network compression and accelerated network architecture optimization algorithms based on the mathematical principle of various optimization algorithms. Finally, this paper analyses the strategy of NAS algorithms, discusses the applications of CNNs, and sheds light on the challenges and prospects of the current CNNs architecture and its optimizations. The explanation of the advantages brought by optimizing different network architecture types, the basis for constructively choosing appropriate CNNs in specific designs and applications are provided. This paper will help the readers to choose constructively appropriate CNNs in specific designs and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  • Aghli N, Ribeiro E (2021) Combining weight pruning and knowledge distillation for CN compression. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 3191–3198

  • Alzubaidi L, Al-Shamma O, Fadhel MA, Farhan L, Zhang J, Duan Y (2020) Optimizing the performance of breast cancer classification by employing the same domain transfer learning from hybrid deep convolutional neural network model. Electronics 9(3):445

    Article  Google Scholar 

  • Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, Santamaría J, Fadhel MA, Al-Amidie M, Farhan L (2021) Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data 8(1):1–74

    Article  Google Scholar 

  • Alzubaidi L, Al-Shamma O, Fadhel MA, Farhan L, Zhang J (2018) Classification of red blood cells in sickle cell anemia using deep convolutional neural network. In: International conference on intelligent systems design and applications. Springer, Cham, pp 550–559

  • Anwar S, Hwang K, Sung W (2017) Structured pruning of deep convolutional neural networks. ACM J Emerg Technol Comput Syst JETC) 13(3):1–18

    Article  Google Scholar 

  • Astrid M, Lee S-I (2017) Cp-decomposition with tensor power method for convolutional neural networks compression. In: 2017 IEEE international conference on Big Data and Smart Computing (BigComp). IEEE, pp 115–118

  • Ba LJ, Caruana R (2013) Do deep nets really need to be deep? Adv Neural Inf Process Syst 3:2654–2662

    Google Scholar 

  • Bengio Y (2013) Deep learning of representations: Looking forward. In: International conference on statistical language and speech processing. Springer, Berlin, pp 1–37

  • Bochkovskiy A, Wang C-Y, Liao H-YM (2020) Yolov4: optimal speed and accuracy of object detection. arXiv preprint. arXiv:2004.10934

  • Bucilu C, Caruana R, Niculescu-Mizil A (2006) Model compression. In: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 535–541

  • Chen X, Hsieh C-J (2020) Stabilizing differentiable architecture search via perturbation-based regularization. In: International conference on machine learning (PMLR), pp 1554–1565

  • Chen T, Goodfellow I, Shlens J (2015a) Net2net: Accelerating learning via knowledge transfer. Computer Science

  • Chen W, Wilson J, Tyree S, Weinberger K, Chen Y (2015b) Compressing neural networks with the hashing trick. In: International conference on machine learning (PMLR), pp 2285–2294

  • Chen X, Li Z, Yuan Y, Yu G, Shen J, Qi D (2020) State-aware tracker for real-time video object segmentation. In: Proceedings of the IEEE/CVF international conference on computer vision and pattern recognition, pp 9384–9393

  • Chen B, Li P, Li B, Lin C, Li C, Sun M, Yan J, Ouyang W (2021a) BN-NAS: neural architecture search with batch normalization. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 307–316

  • Chen M, Peng H, Fu J, Ling H (2021b) Autoformer: searching transformers for visual recognition. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 12270–12280

  • Chen Y, Dai X, Chen D, Liu M, Dong X, Yuan L, Liu Z (2021c) Mobile-former: bridging mobilenet and transformer. arXiv preprint. arXiv:2108.05895

  • Cheng A-C, Lin CH, Juan D-C, Wei W, Sun M (2020) InstaNAS: instance-aware neural architecture search. In: Proceedings of the AAAI conference on artificial intelligence, vol 34, pp 3577–3584

  • Chollet F (2017) Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1251–1258

  • Choudhary T, Mishra V, Goswami A, Sarangapani J (2020) A comprehensive survey on model compression and acceleration. Artif Intell Rev 53(7):5113–5155

    Article  Google Scholar 

  • Chu X, Zhou T, Zhang B, Li J (2020a) Fair DARTS: eliminating unfair advantages in differentiable architecture search. In: European conference on computer vision. Springer, Munich, pp 465–480

  • Chu X, Zhang B, Xu R (2020b) Multi-objective reinforced evolution in mobile neural architecture search. In: European European conference on computer vision. Springer, Munich, pp 99–113

  • Clevert D-A, Unterthiner T, Hochreiter S (2015) Fast and accurate deep network learning by exponential linear units (ELUS). arXiv preprint. arXiv:1511.07289

  • Costa-Pazo A, Bhattacharjee S, Vazquez-Fernandez E, Marcel S (2016) The replay-mobile face presentation-attack database. In: International conference of the Biometrics Special Interest Group (BIOSIG). IEEE, pp 1–7

  • Courbariaux M, Bengio Y, David J-P (2015) BinaryConnect: training deep neural networks with binary weights during propagations. In: Advances in neural information processing systems, pp 3123–3131

  • Courbariaux M, Hubara I, Soudry D, El-Yaniv R, Bengio Y (2016) Binarized neural networks: training deep neural networks with weights and activations constrained to +1 or −1. arXiv preprint. arXiv:1602.02830

  • Csáji BC et al (2001) Approximation with artificial neural networks, vol 24(48). MSc thesis, Faculty of Sciences, Eötvös Loránd University, p 7

  • Dai Z, Liu H, Le QV, Tan M (2021) Coatnet: marrying convolution and attention for all data sizes. arXiv preprint. arXiv:2106.04803

  • Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05), vol 1. IEEE, pp 886–893

  • de Freitas Pereira T, Anjos A, De Martino JM, Marcel S (2013) Can face anti-spoofing countermeasures work in a real world scenario? In: Proceedings of the 2013 international conference on biometrics (ICB). IEEE, pp 1–8

  • Denil M, Shakibi B, Dinh L, Ranzato M, Freitas ND (2013) Predicting parameters in deep learning. University of British Columbia, Vancouver

  • Denton EL, Zaremba W, Bruna J, LeCun Y, Fergus R (2014) Exploiting linear structure within convolutional networks for efficient evaluation. In: Advances in neural information processing systems, pp 1269–1277

  • Devlin J, Chang M-W, Lee K, Toutanova K (2018) Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint. arXiv:1810.04805

  • Dey N, Ren M, Dalca AV, Gerig G (2021) Generative adversarial registration for improved conditional deformable templates. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 3929–3941

  • Ding H, Chen K, Huo Q (2019a) Compressing CNN–DBLSTM models for ocr with teacher–student learning and Tucker decomposition. Pattern Recogn 96:106957

    Article  Google Scholar 

  • Ding R, Chin T-W, Liu Z, Marculescu D (2019b) Regularizing activation distribution for training binarized deep networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 11408–11417

  • Ding X, Hao T, Tan J, Liu J, Han J, Guo Y, Ding G (2021) ResRep: lossless CNN pruning via decoupling remembering and forgetting. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 4510–4520

  • Dong J-D, Cheng A-C, Juan D-C, Wei W, Sun M (2018) DPP-Net: deviceevice-aware progressive search for pareto-optimal neural architectures. In: Proceedings of the European conference on computer vision (ECCV), pp 517–531

  • Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, et al (2020) An image is worth 16 × 16 words: transformers for image recognition at scale. arXiv preprint. arXiv:2010.11929

  • Elsken T, Metzen JH, Hutter F (2019) Neural architecture search: a survey. J Mach Learn Res 20(1):1997–2017

    MathSciNet  MATH  Google Scholar 

  • Erdogmus N, Marcel S (2014) Spoofing face recognition with 3d masks. IEEE Trans Inf Forensics Security 9(7):1084–1097

    Article  Google Scholar 

  • Fang J, Sun Y, Zhang Q, Li Y, Liu W, Wang X (2020) Densely connected search space for more flexible neural architecture search. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 10628–10637

  • Fukushima K, Miyake S (1982) Neocognitron: a self-organizing neural network model for a mechanism of visual pattern recognition. In: Competition and cooperation in neural nets. Springer, Heidelberg, pp 267–285

  • Ge Z, Liu S, Wang F, Li Z, Sun J (2021) YOLOX: exceeding YOLO Series in 2021. arXiv preprint. arXiv:2107.08430

  • George A, Marcel S (2021) Cross modal focal loss for rgbd face anti-spoofing. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 7882–7891

  • Fukushima K (1989) Neocognitron: a hierarchical neural network capable of visual pattern recognition. Neural Netw 1:119–130

  • Girshick R (2015) Fast R-CNN. In: Proceedings of the IEEE international conference on computer vision, pp 1440–1448

  • Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 580–587

  • Gong Y, Liu L, Ming Y, Bourdev L (2014) Compressing deep convolutional networks using vector quantization. Comput Sci+++

  • Graham B, El-Nouby A, Touvron H, Stock P, Joulin A, Jégou H, Douze M (2021) Levit: a vision transformer in convnet’s clothing for faster inference. arXiv preprint. arXiv:2104.01136

  • Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, Liu T, Wang X, Wang G, Cai J et al (2018) Recent advances in convolutional neural networks. Pattern Recogn 77:354–377

    Article  Google Scholar 

  • Gulcehre C, Cho K, Pascanu R, Bengio Y (2014) Learned-norm pooling for deep feedforward and recurrent neural networks. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Springer, pp. 530–546

  • Guo Y, Yao A, Chen Y (2016) Dynamic network surgery for efficient DNNs. arXiv preprint. arXiv:1608.04493

  • Guo Z, Zhang X, Mu H, Heng W, Liu Z, Wei Y, Sun J (2020) Single path one-shot neural architecture search with uniform sampling. In: European conference on computer vision. Springer, Munich, pp 544–560

  • Guo J, Han K, Wang Y, Wu H, Chen X, Xu C, Xu C (2021) Distilling object detectors via decoupled features. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 2154–2164

  • Han S, Mao H, Dally WJ (2015a) Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding. Fiber 56(4):3–7

    Google Scholar 

  • Han S, Pool J, Tran J, Dally WJ (2015b) Learning both weights and connections for efficient neural networks. MIT, Cambridge

  • Han D, Kim J, Kim J (2017) Deep pyramidal residual networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5927–5935

  • Hanson S, Pratt L (1988) Comparing biases for minimal network construction with back-propagation. Adv Neural Inf Process Syst 1:177–185

    Google Scholar 

  • Hassibi B, Stork DG, Wolff G, Watanabe T (1994) Optimal brain surgeon: extensions and performance comparison. In: Cowan JD, Tesauro G, Alspector J (eds) Advances in neural information processing systems, vol 6. Morgan Kaufmann, San Mateo, pp 263–270

  • Håstad J, Goldmann M (1991) On the power of small-depth threshold circuits. Comput Complex 1(2):113–129

    Article  MathSciNet  MATH  Google Scholar 

  • He K, Sun J (2015) Convolutional neural networks at constrained time cost. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5353–5360

  • He K, Zhang X, Ren S, Sun J (2015a) Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans Pattern Anal Mach Intell 37(9):1904–1916

    Article  Google Scholar 

  • He K, Zhang X, Ren S, Sun J (2015b) Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE international conference on computer vision, pp 1026–1034

  • He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778

  • He Y, Zhang X, Sun J (2017) Channel pruning for accelerating very deep neural networks. In: Proceedings of the IEEE international conference on computer vision, pp 1389–1397

  • Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 313(5786):504–507

    Article  MathSciNet  MATH  Google Scholar 

  • Hinton G, Vinyals O, Dean J (2015) Distilling the knowledge in a neural network. Comput Sci 14(7):38–39

    Google Scholar 

  • Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017) Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint. arXiv:1704.04861

  • Howard A, Sandler M, Chu G, Chen L-C, Chen B, Tan M, Wang W, Zhu Y, Pang R, Vasudevan V et al (2019) Searching for mobilenetv3. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 1314–1324

  • Hua W, Zhou Y, De Sa C, Zhang Z, Suh GE (2019) Boosting the performance of cnn accelerators with dynamic fine-grained channel gating. In: Proceedings of the 52nd Annual IEEE/ACM international symposium on microarchitecture, pp 139–150

  • Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4700–4708

  • Huang G, Liu S, Van der Maaten L, Weinberger KQ (2018) Condensenet: an efficient densenet using learned group convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2752–2761

  • Huang X, Xu J, Tai Y-W, Tang C-K (2020) Fast video object segmentation with temporal aggregation network and dynamic template matching. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 8879–8889

  • Huang H, Zhang J, Shan H (2021) When age-invariant face recognition meets face age synthesis: a multi-task learning framework. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 7282–7291

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160(1):106–154

    Article  Google Scholar 

  • Hubel DH, Wiesel TN (2009) Republication of The Journal of Physiology (1959) 148, 574-591: Receptive fields of single neurones in the cat's striate cortex. 1959. J Physiol 587(Pt 12):2721–2732

  • Hu H, Peng R, Tai YW, Tang CK (2016) Network trimming: a data-driven neuron pruning approach towards efficient deep architectures. arXiv preprint. arXiv:1607.03250

  • Hu Q, Wang P, Cheng J (2018) From hashing to CNNs: training binary weight networks via hashing. In: 32nd AAAI conference on artificial intelligence, vol 32

  • Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning (PMLR), pp 448–456

  • Jaderberg M, Vedaldi A, Zisserman A (2014) Speeding up convolutional neural networks with low rank expansions. Comput Sci 4(4):XIII

    Google Scholar 

  • Jegou H, Douze M, Schmid C (2010) Product quantization for nearest neighbor search. IEEE Trans Pattern Anal Mach Intell 33(1):117–128

    Article  Google Scholar 

  • Ji G-P, Fu K, Wu Z, Fan D-P, Shen J, Shao L (2021) Full-duplex strategy for video object segmentation. In Proceedings of the IEEE/CVF international conference on computer vision, pp 4922–4933

  • Ji M, Shin S, Hwang S, Park G, Moon I-C (2021) Refine myself by teaching myself: Feature refinement via self-knowledge distillation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 10664–10673

  • Jia Y et al (2013) An open source convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM international conference on multimedia, Orlando, FL, pp 675–678

  • Jo G, Lee G, Shin D (2020) Exploring group sparsity using dynamic sparse training. In: 2020 IEEE international conference on consumer electronics-Asia (ICCE-Asia). IEEE, pp 1–2

  • Jocher G (2020) Yolo v5. https://github.com/ultralytics/yolov5 Accessed July 2020

  • Khan A, Sohail A, Zahoora U, Qureshi AS (2020) A survey of the recent architectures of deep convolutional neural networks. Artif Intell Rev 53(8):5455–5516

    Article  Google Scholar 

  • Kim YD, Park E, Yoo S, Choi T, Yang L, Shin D (2015) Compression of deep convolutional neural networks for fast and low power mobile applications. Comput Sci 71(2):576–584

    Google Scholar 

  • Kim S-W, Kook H-K, Sun J-Y, Kang M-C, Ko S-J (2018) Parallel feature pyramid network for object detection. In: Proceedings of the European conference on computer vision (ECCV), pp 234–250

  • Kong T, Sun F, Tan C, Liu H, Huang W (2018) Deep feature pyramid reconfiguration for object detection. In: Proceedings of the European conference on computer vision (ECCV), pp 169–185

  • Kozyrskiy N, Phan A-H (2020) Cnn acceleration by low-rank approximation with quantized factors. arXiv preprint. arXiv:2006.08878

  • Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25:1097–1105

    Google Scholar 

  • Lai Z, Lu E, Xie W (2020) Mast: a memory-augmented self-supervised tracker. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 6479–6488

  • Lebedev V, Lempitsky V (2016) Fast convnets using group-wise brain damage. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2554–2564

  • Lebedev V, Ganin Y, Rakhuba M, Oseledets I, Lempitsky V (2014) Speeding-up convolutional neural networks using fine-tuned cp-decomposition. In: International conference on learning representations (ICLR Poster)

  • LeCun Y, Denker JS, Solla SA (1990) Optimal brain damage. In: Touretzky DS (ed) Advances in neural information processing systems. Morgan Kaufmann, San Francisco, pp 598–605

  • LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  • LeCun Y, Kavukcuoglu K, Farabet C (2010) Convolutional networks and applications in vision. In: Proceedings of 2010 IEEE international symposium on circuits and systems. IEEE, pp 253–256

  • Lee KH, Verma N (2013) A low-power processor with configurable embedded machine-learning accelerators for high-order and adaptive analysis of medical-sensor signals. IEEE J Solid-State Circuits 48(7):1625–1637

    Article  Google Scholar 

  • Lee H, Wu Y-H, Lin Y-S, Chien S-Y (2019) Convolutional neural network accelerator with vector quantization. In: 2019 IEEE international symposium on circuits and systems (ISCAS). IEEE, pp 1–5

  • Lee K, Kim H, Lee H, Shin D (2020) Flexible group-level pruning of deep neural networks for on-device machine learning. In: 2020 Design, automation & test in Europe cnference & exhibition (DATE). IEEE, pp 79–84

  • Lee D, Wang D, Yang Y, Deng L, Zhao G, Li G (2021) QTTNet: quantized tensor train neural networks for 3D object and video recognition. Neural Netw 141:420–432

  • Leng C, Dou Z, Li H, Zhu S, Jin R (2018) Extremely low bit neural network: Squeeze the last bit out with ADMM. In: Thirty-Second AAAI Conference on Artificial Intelligence

  • Li F, Zhang B, Liu B (2016) Ternary weight networks. arXiv preprint. arXiv:1605.04711

  • Li H, Kadav A, Durdanovic I, Samet H, Graf HP (2016) Pruning filters for efficient convnets. arXiv preprint. arXiv:1608.08710

  • Li L, Zhu J, Sun M-T (2019) A spectral clustering based filter-level pruning method for convolutional neural networks. IEICE Trans Inf Syst 102(12):2624–2627

    Article  Google Scholar 

  • Li C, Wang G, Wang B, Liang X, Li Z, Chang X (2021a) Dynamic slimmable network. In: Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition, pp 8607–8617

  • Li Y, Ding W, Liu C, Zhang B, Guo G (2021b) TRQ: Ternary neural networks with residual quantization. In: Proceedings of the AAAI conference on artificial intelligence

  • Li Y, Gu S, Mayer C, Gool LV, Timofte R (2020) Group sparsity: The hinge between filter pruning and decomposition for network compression. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 8018–8027

  • Lin M, Chen Q, Yan S (2013) Network in network. arXiv preprint. arXiv:1312.4400

  • Lin D, Talathi S, Annapureddy S (2016) Fixed point quantization of deep convolutional networks. In: International conference on machine learning (PMLR), pp 2849–2858

  • Lin X, Zhao C, Pan W (2017a) Towards accurate binary convolutional neural network. In: Advances in neural information processing systems

  • Lin T-Y, Dollár P, Girshick R, He K, Hariharan B, Belongie S (2017b) Feature pyramid networks for object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2117–2125

  • Lin R, Ko C-Y, He Z, Chen C, Cheng Y, Yu H, Chesi G, Wong N (2020) Hotcake: higher order tucker articulated kernels for deeper CNN compression. In: 2020 IEEE 15th international conference on solid-state & integrated circuit technology (ICSICT). IEEE, pp 1–4

  • Liu B, Wang M, Foroosh H, Tappen M, Pensky M (2015) Sparse convolutional neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 806–814

  • Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y, Berg AC (2016) SSD: single shot multibox detector. In: European conference on computer vision. Springer, Cham, pp 21–37

  • Liu Z, Li J, Shen Z, Huang G, Yan S, Zhang C (2017) Learning efficient convolutional networks through network slimming. In: Proceedings of the IEEE international conference on computer vision, pp 2736–2744

  • Liu C, Zoph B, Neumann M, Shlens J, Hua W, Li L-J, Fei-Fei L, Yuille A, Huang J, Murphy K (2018a) Progressive neural architecture search. In: Proceedings of the European conference on computer vision (ECCV), pp 19–34

  • Liu X, Pool J, Han S, Dally WJ (2018b) Efficient sparse-Winograd convolutional neural networks. arXiv preprint. arXiv:1802.06367

  • Liu C, Chen L-C, Schroff F, Adam H, Hua W, Yuille AL, Fei-Fei L (2019) Auto-deeplab: hierarchical neural architecture search for semantic image segmentation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 82–92

  • Liu Z, Shen Z, Savvides M, Cheng K-T (2020a) Reactnet: towards precise binary neural network with generalized activation functions. In: European conference on computer vision. Springer, Berlin, pp 143–159

  • Liu J, Xu Z, Shi R, Cheung RC, So HK (2020b) Dynamic sparse training: Find efficient sparse network from scratch with trainable masked layers. arXiv preprint. arXiv:2005.06870

  • Liu D, Chen X, Fu J, Liu X (2021a) Pruning ternary quantization. arXiv preprint. arXiv:2107.10998

  • Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B (2021b) Swin transformer: hierarchical vision transformer using shifted windows. arXiv preprint. arXiv:2103.14030

  • Liu L, Zhang S, Kuang Z, Zhou A, Xue J-H, Wang X, Chen Y, Yang W, Liao Q, Zhang W (2021c) Group fisher pruning for practical network compression. In: International conference on machine learning (PMLR), pp 7021–7032

  • Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  • Lu Z, Whalen I, Boddeti V, Dhebar Y, Deb K, Goodman E, Banzhaf W (2019) NSGA-Net: neural architecture search using multi-objective genetic algorithm. In: Proceedings of the genetic and evolutionary computation conference, pp 419–427

  • Luo P, Zhu Z, Liu Z, Wang X, Tang X (2016) Face model compression by distilling knowledge from neurons. In: Proceedings of the 30th AAAI conference on artificial intelligence. AAAI, Phoenix

  • Luo J-H, Wu J, Lin W (2017) Thinet: a filter level pruning method for deep neural network compression. In: Proceedings of the IEEE international conference on computer vision, pp 5058–5066

  • Ma N, Zhang X, Zheng H-T, Sun J (2018) Shufflenet v2: Practical guidelines for efficient cnn architecture design. In: Proceedings of the European conference on computer vision (ECCV), pp 116–131

  • Ma X, Guo F-M, Niu W, Lin X, Tang J, Ma K, Ren B, Wang Y (2020) PCONV: the missing but desirable sparsity in DNN weight pruning for real-time execution on mobile devices. In: Proceedings of the AAAI conference on artificial intelligence, vol 34, pp 5117–5124

  • Maas AL, Hannun AY, Ng AY, et al (2013) Rectifier nonlinearities improve neural network acoustic models. Proc ICML 30:3. Citeseer

  • Mao H, Han S, Pool J, Li W, Liu X, Wang Y, Dally WJ (2017) Exploring the regularity of sparse structure in convolutional neural networks. arXiv preprint. arXiv:1705.08922

  • Mao Y, Wang N, Zhou W, Li H (2021) Joint inductive and transductive learning for video object segmentation. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 9670–9679

  • Maziarz K, Tan M, Khorlin A, Chang K-YS, Gesmundo A (2019) Evo-nas: Evolutionary-neural hybrid agent for architecture search

  • Mehta S, Rastegari M (2021) MobileViT: Light-weight, general-purpose, and mobile-friendly vision transformer. arXiv preprint. arXiv:2110.02178

  • Michel G, Alaoui MA, Lebois A, Feriani A, Felhi M (2019) Dvolver: Efficient pareto-optimal neural network architecture search. arXiv preprint. arXiv:1902.01654

  • Mikolov T, Karafiát M, Burget L, Černocky J, Khudanpur S (2010) Eleventh annual conference of the international speech communication association

  • Montremerlo M, Beeker J, Bhat S, Dahlkamp H (2008) The stanford entry in the urban challenge. J Field Robot 7(9):468–492

    Google Scholar 

  • Nair V, Hinton GE (2010) Rectified linear units improve restricted Boltzmann machines. In: International conference on international conference on machine learning (ICML)

  • Nguyen DT, Nguyen TN, Kim H, Lee H-J (2019) A high-throughput and power-efficient FPGA implementation of YOLO CNN for object detection. IEEE Trans Very Large Scale Integr (VLSI) Syst 27(8):1861–1873

    Article  Google Scholar 

  • Niu W, Ma X, Lin S, Wang S, Qian X, Lin X, Wang Y, Ren B (2020) PatDNN: achieving real-time DNN execution on mobile devices with pattern-based weight pruning. In: Proceedings of the 25th international conference on architectural support for programming languages and operating systems, pp 907–922

  • Novikov A, Podoprikhin D, Osokin A, Vetrov D (2015) Tensorizing neural networks. arXiv preprint. arXiv:1509.06569

  • Oseledets IV (2011) Tensor-train decomposition. SIAM J Sci Comput 33(5):2295–2317

    Article  MathSciNet  MATH  Google Scholar 

  • Peng Z, Huang W, Gu S, Xie L, Wang Y, Jiao J, Ye Q (2021) Conformer: local features coupling global representations for visual recognition. arXiv preprint. arXiv:2105.03889

  • Perez-Rua J-M, Baccouche M, Pateux S (2018) Efficient progressive neural architecture search. arXiv preprint. arXiv:1808.00391

  • Punyani P, Gupta R, Kumar A (2020) Neural networks for facial age estimation: a survey on recent advances. Artif Intell Rev 53(5):3299–3347

    Article  Google Scholar 

  • Qin Z, Li Z, Zhang Z, Bao Y, Yu G, Peng Y, Sun J (2019) Thundernet: towards real-time generic object detection on mobile devices. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 6718–6727

  • Radford A, Narasimhan K, Salimans T, Sutskever I (2018) Improving language understanding by generative pre-training

  • Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I et al (2019) Language models are unsupervised multitask learners. OpenAI Blog 1(8):9

    Google Scholar 

  • Rastegari M, Ordonez V, Redmon J, Farhadi A (2016) XNOR-Net: Imagenet classification using binary convolutional neural networks. In: European conference on computer vision. Springer, Cham, pp 525–542

  • Razani R, Morin G, Sari E, Nia VP (2021) Adaptive binary-ternary quantization. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 4613–4618

  • Real E, Aggarwal A, Huang Y, Le QV (2019) Regularized evolution for image classifier architecture search. In: Proceedings of the aaai conference on artificial intelligence, vol 33, pp 4780–4789

  • Redfern AJ, Zhu L, Newquist MK (2021) BCNN: a binary CNN with all matrix OPS quantized to 1 bit precision. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 4604–4612

  • Redmon J, Farhadi A (2017) Yolo9000: better, faster, stronger. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7263–7271

  • Redmon J, Farhadi A (2018) Yolov3: an incremental improvement. arXiv preprint. arXiv:1804.02767

  • Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 779–788

  • Ren S, He K, Girshick R, Sun J (2015) Faster R-CNN: towards real-time object detection with region proposal networks. Adv Neural Inf Process Syst 28:91–99

    Google Scholar 

  • Romero A, Ballas N, Kahou SE, Chassang A, Gatta C, Bengio Y (2014) Fitnets: Hints for thin deep nets. rXiv preprint. arXiv:1412.6550

  • Roy AG, Siddiqui S, Pölsterl S, Navab N, Wachinger C (2020) squeeze & exciteguided few-shot segmentation of volumetric images. Med Image Anal 59:101587

    Article  Google Scholar 

  • Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C (2018) Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4510–4520

  • Seong H, Hyun J, Kim E (2020) Kernelized memory network for video object segmentation. In: European conference on computer vision. Springer, Cham, pp 629–645

  • Sharma M, Markopoulos PP, Saber E, Asif MS, Prater-Bennette A (2021) Convolutional auto-encoder with tensor-train factorization. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 198–206

  • Simard PY, Steinkraus D, Platt JC et al (2003) Best practices for convolutional neural networks applied to visual document analysis. In: ICDAR, vol 3

  • Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arxiv preprint. arXiv:1409.1556

  • Srinivas S, Babu RV (2015) Data-free parameter pruning for deep neural networks. Comput Sci. https://doi.org/10.5244/C.29.31

  • Srinivas S, Sarvadevabhatla RK, Mopuri KR, Prabhu N, Kruthiventi SS, Babu RV (2016) A taxonomy of deep convolutional neural nets for computer vision. Front Robotics AI 2:36

    Article  Google Scholar 

  • Srinivas A, Lin T-Y, Parmar N, Shlens J, Abbeel P, Vaswani A (2021) Bottleneck transformers for visual recognition. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 16519–16529

  • Srivastava RK, Greff K, Schmidhuber J (2015) Training very deep networks. In: Advances in neural information processing systems

  • Sun W, Zhou A, Stuijk S, Wijnhoven R, Nelson AO, Corporaal H et al (2021) DominoSearch: find layer-wise fine-grained N:M sparse schemes from dense neural networks. In: Advances in neural information processing systems 34 (NeurIPS 2021)

  • Sundermeyer M, Schlüter R, Ney H (2012) Lstm neural networks for language modeling. In: 13th annual conference of the international speech communication association

  • Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9

  • Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: 31st AAAI conference on artificial intelligence

  • Takahashi N, Mitsufuji Y (2021) Densely connected multi-dilated convolutional networks for dense prediction tasks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 993–1002

  • Tan M, Chen B, Pang R, Vasudevan V, Sandler M, Howard A, Le QV (2019) Mnasnet: platform-aware neural architecture search for mobile. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 2820–2828

  • Tang W, Hua G, Wang L (2017) How to train a compact binary neural network with high accuracy? In: 31st AAAI conference on artificial intelligence

  • Tang H, Liu X, Sun S, Yan X, Xie X (2021a) Recurrent mask refinement for few-shot medical image segmentation. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 3918–3928

  • Tang Y, Wang Y, Xu Y, Deng Y, Xu C, Tao D, Xu C (2021a) Manifold regularized dynamic network pruning. In: Proceedings of the IEEE/CVF international conference on computer vision and pattern recognition, pp 5018–5028

  • Theis L, Korshunova I, Tejani A, Huszár F (2018) Faster gaze prediction with dense networks and fisher pruning. arXiv preprint. arXiv:1801.05787

  • Touvron H, Cord M, Douze M, Massa F, Sablayrolles A, Jégou H (2021) Training data-efficient image transformers and distillation through attention. In: International conference on machine learning (PMLR), pp 10347–10357

  • Uijlings JR, Van De Sande KE, Gevers T, Smeulders AW (2013) Selective search for object recognition. Int J Comput Vis 104(2):154–171

    Article  Google Scholar 

  • Vanhoucke V, Senior A, Mao MZ (2011) Improving the speed of neural networks on CPUS. In: Deep learning and unsupervised feature learning workshop

  • Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. In: Advances in neural information processing systems, pp 5998–6008

  • Wang P, Cheng J (2016) Accelerating convolutional neural networks for mobile applications. In: Proceedings of the 24th ACM international conference on Multimedia, pp 541–545

  • Wang P, Cheng J (2017) Fixed-point factorized networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4012–4020

  • Wang P, Hu Q, Zhang Y, Zhang C, Liu Y, Cheng J (2018) Two-step quantization for low-bit neural networks. In: Proceedings of the IEEE Conference on computer vision and pattern recognition, pp 4376–4384

  • Wang Z, Lin S, Xie J, Lin Y (2019a) Pruning blocks for cnn compression and acceleration via online ensemble distillation. IEEE Access 7:175703–175716

    Article  Google Scholar 

  • Wang W, Fu C, Guo J, Cai D, He X (2019b) COP: customized deep model compression via regularized correlation-based filter-level pruning. Neurocomputing 464:533–545

  • Wang Z, Lu J, Tao C, Zhou J, Tian Q (2019c) Learning channel-wise interactions for binary convolutional neural networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 568–577

  • Wang C-Y, Liao H-YM, Wu Y-H, Chen P-Y, Hsieh J-W, Yeh I-H (2020a) Cspnet: a new backbone that can enhance learning capability of CNN. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, pp 390–391

  • Wang N, Zhou W, Li H (2020b) Contrastive transformation for self-supervised correspondence learning. arXiv preprint. arXiv:2012.05057

  • Wang D, Li M, Gong C, Chandra V (2021a) Attentivenas: improving neural architecture search via attentive sampling. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 6418–6427

  • Wang Y, Xu Z, Wang X, Shen C, Cheng B, Shen H, Xia H (2021b) End-to-end video instance segmentation with transformers. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 8741–8750

  • Wang D, Zhao G, Chen H, Liu Z, Deng L, Li G (2021c) Nonlinear tensor train format for deep neural network compression. Neural Netw 144:320–333

    Article  Google Scholar 

  • Wang C, Liu B, Liu L, Zhu Y, Hou J, Liu P, Li X (2021d) A review of deep learning used in the hyperspectral image analysis for agriculture. Artif Intell Rev 54:5205–5253

  • Wang Z, Xiao H, Lu J, Zhou J (2021e) Generalizable mixed-precision quantization via attribution rank preservation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 5291–5300

  • Wang W, Xie E, Li X, Fan D-P, Song K, Liang D, Lu T, Luo P, Shao L (2021f) Pyramid vision transformer: a versatile backbone for dense prediction without convolutions. arXiv preprint. arXiv:2102.12122

  • Wen W, Wu C, Wang Y, Chen Y, Li H (2016) Learning structured sparsity in deep neural networks. Adv Neural Inf Process Syst 29:2074–2082

    Google Scholar 

  • Wen W, Xu C, Yan F, Wu C, Wang Y, Chen Y, Li H (2017) Terngrad: Ternary gradients to reduce communication in distributed deep learning. arXiv preprint. arXiv:1705.07878

  • Wu J, Leng C, Wang Y, Hu Q, Cheng J (2016) Quantized convolutional neural networks for mobile devices. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4820–4828

  • Wu Y, Wu Y, Gong R, Lv Y, Chen K, Liang D, Hu X, Liu X, Yan J (2020a) Rotation consistent margin loss for efficient low-bit face recognition. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 6866–6876

  • Wu B, Xu C, Dai X, Wan A, Zhang P, Yan Z, Tomizuka M, Gonzalez J, Keutzer K, Vajda P (2020b) Visual transformers: token-based image representation and processing for computer vision. arXiv preprint. arXiv:2006.03677

  • Xie L, Yuille A (2017) Genetic CNN. In: Proceedings of the IEEE international conference on computer vision, pp 1379–1388

  • Xie S, Girshick R, Dollár P, Tu Z, He K (2017) Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1492–1500

  • Xu H (2020) Pnfm: a filter level pruning method for cnn compression. In: Proceedings of the 3rd international conference on information technologies and electrical engineering, pp 49–54

  • Xu B, Wang N, Chen T, Li M (2015) Empirical evaluation of rectified activations in convolutional network. arXiv preprint. arXiv:1505.00853

  • Xu Y, Xie L, Zhang X, Chen X, Qi G-J, Tian Q, Xiong H (2019) PC-DARTS: partial channel connections for memory-efficient architecture search. arXiv preprint. arXiv:1907.05737

  • Xu Y, Wang Y, Han K, Tang Y, Jui S, Xu C, Xu C (2021) Renas: relativistic evaluation of neural architecture search. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 4411–4420

  • Yamamoto K (2021) Learnable companding quantization for accurate low-bit neural networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 5029–5038

  • Yang Z, Wang Y, Chen X, Shi B, Xu C, Xu C, Tian Q, Xu C (2020a) CARS: continuous evolution for efficient neural architecture search. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 1829–1838

  • Yang Z, Wang Y, Han K, Xu C, Xu C, Tao D, Xu C (2020b) Searching for low-bit weights in quantized neural networks. arXiv preprint. arXiv:2009.08695

  • Yang Z, Wang Y, Chen X, Guo J, Zhang W, Xu C, Xu C, Tao D, Xu C (2021) Hournas: extremely fast neural architecture search through an hourglass lens. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 10896–10906

  • Yao L, Pi R, Xu H, Zhang W, Li Z, Zhang T (2021) G-DetKD: towards general distillation framework for object detectors via contrastive and semantic-guided feature imitation. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 3591–3600

  • Ye J, Li G, Chen D, Yang H, Zhe S, Xu Z (2020) Block-term tensor neural networks. Neural Netw 130:11–21

    Article  Google Scholar 

  • Ye M, Kanski M, Yang D, Chang Q, Yan Z, Huang Q, Axel L, Metaxas D (2021) DeepTag: an unsupervised deep learning method for motion tracking on cardiac tagging magnetic resonance images. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 7261–7271

  • Yuan L, Wang T, Zhang X, Tay FE, Jie Z, Liu W, Feng J (2020) Central similarity quantization for efficient image and video retrieval. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 3083–3092

  • Yuan L, Chen Y, Wang T, Yu W, Shi Y, Jiang Z, Tay FE, Feng J, Yan S (2021) Tokens-to-token vit: training vision transformers from scratch on imagenet. arXiv preprint. arXiv:2101.11986

  • Zagoruyko S, Komodakis N (2016a) Paying more attention to attention: Improving the performance of convolutional neural networks via attention transfer. arXiv preprint. arXiv:1612.03928

  • Zagoruyko S, Komodakis N (2016b) Wide residual networks, British Machine Vision Conference

  • Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: European conference on computer vision. Springer, Cham, pp 818–833

  • Zhang X, Zou J, He K, Sun J (2015) Accelerating very deep convolutional networks for classification and detection. IEEE Trans Pattern Anal Mach Intell 38(10):1943–1955

    Article  Google Scholar 

  • Zhang Q, Zhang M, Chen T, Sun Z, Ma Y, Yu B (2019) Recent advances in convolutional neural network acceleration. Neurocomputing 323:37–51

    Article  Google Scholar 

  • Zhang T, Cheng H-P, Li Z, Yan F, Huang C, Li H, Chen Y (2020) Autoshrink: a topology-aware NAS for discovering efficient neural architecture. In: Proceedings of the AAAI conference on artificial intelligence, vol 34, pp 6829–6836

  • Zhang Z, Lu X, Cao G, Yang Y, Jiao L, Liu F (2021a) Vit-yolo: Transformer-based yolo for object detection. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 2799–2808

  • Zhang C, Yuan G, Niu W, Tian J, Jin S, Zhuang D, Jiang Z, Wang Y, Ren B, Song SL et al (2021b) Clicktrain: efficient and accurate end-to-end deep learning training via fine-grained architecture-preserving pruning. In: Proceedings of the ACM international conference on supercomputing, pp 266–278

  • Zhao Q, Sheng T, Wang Y, Tang Z, Chen Y, Cai L, Ling H (2019) M2det: a single-shot object detector based on multi-level feature pyramid network. In: Proceedings of the AAAI conference on artificial intelligence, vol 33, pp 9259–9266

  • Zhao T, Cao K, Yao J, Nogues I, Lu L, Huang L, Xiao J, Yin Z, Zhang L (2021a) 3D graph anatomy geometry-integrated network for pancreatic mass segmentation, diagnosis, and quantitative patient management. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 13743–13752

  • Zhao H, Zhou W, Chen D, Wei T, Zhang W, Yu N (2021b) Multi-attentional deepfake detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 2185–2194

  • Zhong Z, Yang Z, Deng B, Yan J, Wu W, Shao J, Liu C-L (2020) Blockqnn: efficient block-wise neural network architecture generation. IEEE Trans Pattern Anal Mach Intell 43(7):2314–2328

  • Zhou H, Alvarez JM, Porikli F (2016) Less is more: towards compact CNNs. In: European conference on computer vision. Springer, Berlin, pp 662–677

  • Zhou M, Liu Y, Long Z, Chen L, Zhu C (2019) Tensor rank learning in CP decomposition via convolutional neural network. Signal Process Image Commun 73:12–21

    Google Scholar 

  • Zhou S, Wang Y, Chen D, Chen J, Wang X, Wang C, Bu J (2021) Distilling holistic knowledge with graph neural networks. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 10387–10396

  • Zhou S, Wu Y, Ni Z, Zhou X, Wen H, Zou Y (2016) DoReFa-Net: training low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint. arXiv:2004.10934

  • Zhu C, Han S, Mao H, Dally WJ (2016) Trained ternary quantization. arXiv preprint. arXiv:1612.01064

  • Zhu X, Lyu S, Wang X, Zhao Q (2021a) TPH-YOLOv5: improved yolov5 based on transformer prediction head for object detection on drone-captured scenarios. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 2778–2788

  • Zhu J, Tang S, Chen D, Yu S, Liu Y, Rong M, Yang A, Wang X (2021b) Complementary relation contrastive distillation. In: Proceedings of the IEEE/CVF international conference on computer visionand pattern recognition, pp 9260–9269

  • Zoph B, Le QV (2016) Neural architecture search with reinforcement learning. arXiv preprint. arXiv:1611.01578

  • Zoph B, Vasudevan V, Shlens J, Le QV (2018) Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 8697–8710

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants No. 61573330 and 61720106009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Cong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cong, S., Zhou, Y. A review of convolutional neural network architectures and their optimizations. Artif Intell Rev 56, 1905–1969 (2023). https://doi.org/10.1007/s10462-022-10213-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-022-10213-5

Keywords

Navigation