Skip to main content
Log in

The dynamic brain N-glycome

  • Comprehensive Review Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The attachment of carbohydrates to other macromolecules, such as proteins or lipids, is an important regulatory mechanism termed glycosylation. One subtype of protein glycosylation is asparagine-linked glycosylation (N-glycosylation) which plays a key role in the development and normal functioning of the vertebrate brain. To better understand the role of N-glycans in neurobiology, it’s imperative we analyse not only the functional roles of individual structures, but also the collective impact of large-scale changes in the brain N-glycome. The systematic study of the brain N-glycome is still in its infancy and data are relatively scarce. Nevertheless, the prevailing view has been that the neuroglycome is inherently restricted with limited capacity for variation. The development of improved methods for N-glycomics analysis of brain tissue has facilitated comprehensive characterisation of the complete brain N-glycome under various experimental conditions on a larger scale. Consequently, accumulating data suggest that it’s more dynamic than previously recognised and that, within a general framework, it has a given capacity to change in response to both intrinsic and extrinsic stimuli. Here, we provide an overview of the many factors that can alter the brain N-glycome, including neurodevelopment, ageing, diet, stress, neuroinflammation, injury, and disease. Given this emerging evidence, we propose that the neuroglycome has a hitherto underappreciated plasticity and we discuss the therapeutic implications of this regarding the possible reversal of pathological changes via interventions. We also briefly review the merits and limitations of N-glycomics as an analytical method before reflecting on some of the outstanding questions in the field.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Khoury, G.A., Baliban, R.C., Floudas, C.A.: Proteome-wide post-translational modification statistics: Frequency analysis and curation of the swiss-prot database. Sci. Rep. 1, (2011). https://doi.org/10.1038/srep00090

  2. Varki, A.: Essentials of Glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY) (2015)

    Google Scholar 

  3. Flynn, R.A., Pedram, K., Malaker, S.A., Batista, P.J., Smith, B.A.H., Johnson, A.G., George, B.M., Majzoub, K., Villalta, P.W., Carette, J.E., Bertozzi, C.R.: Small RNAs are modified with N-glycans and displayed on the surface of living cells. Cell 184, 3109-3124.e22 (2021). https://doi.org/10.1016/j.cell.2021.04.023

    Article  CAS  PubMed  Google Scholar 

  4. Yu, R.K., Schengrund, C.-L. (eds.): Glycobiology of the nervous system. Springer, New York, New York, NY (2008)

    Google Scholar 

  5. Yagi, H., Kato, K.: Functional roles of glycoconjugates in the maintenance of stemness and differentiation process of neural stem cells. Glycoconj. J. 34, 757–763 (2017). https://doi.org/10.1007/s10719-016-9707-x

    Article  CAS  PubMed  Google Scholar 

  6. Rowlands, D., Sugahara, K., Kwok, J.: Glycosaminoglycans and Glycomimetics in the Central Nervous System. Molecules 20, 3527–3548 (2015). https://doi.org/10.3390/molecules20033527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schnaar, R.L., Gerardy-Schahn, R., Hildebrandt, H.: Sialic Acids in the Brain: Gangliosides and Polysialic Acid in Nervous System Development, Stability, Disease, and Regeneration. Physiol. Rev. 94, 461–518 (2014). https://doi.org/10.1152/physrev.00033.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kleene, R., Schachner, M.: Glycans and neural cell interactions. Nat. Rev. Neurosci. 5, 195–208 (2004). https://doi.org/10.1038/nrn1349

    Article  CAS  PubMed  Google Scholar 

  9. Thompson, J.W., Sorum, A.W., Hsieh-Wilson, L.C.: Deciphering the Functions of O-GlcNAc Glycosylation in the Brain: The Role of Site-Specific Quantitative O-GlcNAcomics. Biochemistry 57, 4010–4018 (2018). https://doi.org/10.1021/acs.biochem.8b00516

    Article  CAS  PubMed  Google Scholar 

  10. Knežević, A., Bones, J., Kračun, S.K., Gornik, O., Rudd, P.M., Lauc, G.: High throughput plasma N-glycome profiling using multiplexed labelling and UPLC with fluorescence detection. Analyst. 136, 4670–4673 (2011). https://doi.org/10.1039/c1an15684e

    Article  CAS  PubMed  Google Scholar 

  11. Wing, D.R., Rademacher, T.W., Field, M.C., Dwek, R.A., Schmitz, B., Thor, G., Schachner, M.: Use of large-scale hydrazinolysis in the preparation of N-linked oligosaccharide libraries: application to brain tissue. Glycoconj. J. 9, 293–301 (1992). https://doi.org/10.1007/BF00731089

    Article  CAS  PubMed  Google Scholar 

  12. Chen, Y.-J., Wing, D.R., Guile, G.R., Dwek, R.a., Harvey, D.J., Zamze, S.: Neutral N-glycans in adult rat brain tissue. Complete characterisation reveals fucosylated hybrid and complex structures. Eur. J. Biochem. 251, 691–703 (1998). https://doi.org/10.1046/j.1432-1327.1998.2510691.x

  13. Zamze, S., Harvey, D.J., Chen, Y.-J., Guile, G.R., Dwek, R.a., Wing, D.R.: Sialylated N-glycans in adult rat brain tissue. A widespread distribution of disialylated antennae in complex and hybrid structures. Eur. J. Biochem. 258, 243–270 (1998). https://doi.org/10.1046/j.1432-1327.1998.2580243.x

  14. Fujimoto, I., Menon, K.K., Otake, Y., Tanaka, F., Wada, H., Takahashi, H., Tsuji, S., Natsuka, S., Nakakita, S.i, Hase, S., Ikenaka, K.: Systematic analysis of N-linked sugar chains from whole tissue employing partial automation. Anal. Biochem. 267, 336–43 (1999)

  15. Hase, S., Ikenaka, K., Mikoshiba, K., Ikenaka, T.: Analysis of tissue glycoprotein sugar chains by two-dimensional high-performance liquid chromatographic mapping. J. Chromatogr. B Biomed. Sci. Appl. 434, 51–60 (1988). https://doi.org/10.1016/0378-4347(88)80061-6

    Article  CAS  Google Scholar 

  16. Yoshimura, T., Yamada, G., Narumi, M., Koike, T., Ishii, A., Sela, I., Mitrani-Rosenbaum, S., Ikenaka, K.: Detection of N-glycans on small amounts of glycoproteins in tissue samples and sodium dodecyl sulfate-polyacrylamide gels. Anal. Biochem. 423, 253–260 (2012). https://doi.org/10.1016/j.ab.2012.01.023

    Article  CAS  PubMed  Google Scholar 

  17. Parker, B.L., Thaysen-Andersen, M., Solis, N., Scott, N.E., Larsen, M.R., Graham, M.E., Packer, N.H., Cordwell, S.J.: Site-Specific Glycan-Peptide Analysis for Determination of N-Glycoproteome Heterogeneity. J. Proteome Res. 12, 5791–5800 (2013). https://doi.org/10.1021/pr400783j

    Article  CAS  PubMed  Google Scholar 

  18. Liu, J., Wang, F., Mao, J., Zhang, Z., Liu, Z., Huang, G., Cheng, K., Zou, H.: High-Sensitivity N-Glycoproteomic Analysis of Mouse Brain Tissue by Protein Extraction with a Mild Detergent of N-Dodecyl β-D-Maltoside. Anal. Chem. 1–16 (2015). https://doi.org/10.1021/ac504700t

  19. Gizaw, S.T., Ohashi, T., Tanaka, M., Hinou, H., Nishimura, S.I.: Glycoblotting method allows for rapid and efficient glycome profiling of human Alzheimer’s disease brain, serum and cerebrospinal fluid towards potential biomarker discovery. Biochim. Biophys. Acta - Gen. Subj. 1860, 1716–1727 (2016). https://doi.org/10.1016/j.bbagen.2016.03.009

    Article  CAS  Google Scholar 

  20. Klarić, T., Gudelj, I.: HILIC-UPLC Analysis of Brain Tissue N-Glycans. Methods Mol. Biol. 1503, 207–216 (2017). https://doi.org/10.1007/978-1-4939-6493-2_16

    Article  CAS  PubMed  Google Scholar 

  21. Hu, Y., Zhou, S., Khalil, S.I., Renteria, C.L., Mechref, Y.: Glycomic profiling of tissue sections by LC-MS. Anal. Chem. 85, 4074–4079 (2013). https://doi.org/10.1021/ac400106x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hsiao, C.-T., Wang, P.-W., Chang, H.-C., Chen, Y.-Y., Wang, S.-H., Chern, Y., Khoo, K.-H.: Advancing a High Throughput Glycotope-centric Glycomics Workflow Based on nanoLC-MS 2-product Dependent-MS 3 Analysis of Permethylated Glycans. Mol. Cell. Pro-teomics. 16, 2268–2280 (2017). https://doi.org/10.1074/mcp.TIR117.000156

    Article  CAS  Google Scholar 

  23. Toghi Eshghi, S., Yang, S., Wang, X., Shah, P., Li, X., Zhang, H.: Imaging of N-Linked glycans from formalin-fixed paraffin-embedded tissue sections using MALDI mass spectrometry. ACS Chem. Biol. 9, 2149–2156 (2014). https://doi.org/10.1021/cb500405h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Powers, T.W., Jones, E.E., Betesh, L.R., Romano, P.R., Gao, P., Copland, J.A., Mehta, A.S., Drake, R.R.: Matrix assisted laser desorption ionization imaging mass spectrometry workflow for spatial profiling analysis of N-linked Glycan expression in tissues. Anal. Chem. 85, 9799–9806 (2013). https://doi.org/10.1021/ac402108x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vacchini, M., Cipolla, L., Gornik, O., Lauc, G., Klarić, T.: A precise and versatile platform for rapid glycosylation analysis of brain tissue. Anal. Methods. 12, 1786–1797 (2020). https://doi.org/10.1039/c9ay02596k

    Article  CAS  Google Scholar 

  26. Hasan, M.M., Mimi, M.A., Mamun, M. Al, Islam, A., Waliullah, A.S.M., Nabi, M.M., Tamannaa, Z., Kahyo, T., Setou, M.: Mass Spectrometry Imaging for Glycome in the Brain. Front. Neuroanat. 0, 56 (2021). https://doi.org/10.3389/FNANA.2021.711955

  27. Tena, J., Lebrilla, C.B.: Glycomic profiling and the mammalian brain. Proc. Natl. Acad. Sci. U. S. A. 118, 1–3 (2021). https://doi.org/10.1073/PNAS.2022238118

    Article  Google Scholar 

  28. Conroy, L.R., Hawkinson, T.R., Young, L.E.A., Gentry, M.S., Sun, R.C.: Emerging roles of N-linked glycosylation in brain physiology and disorders. Trends Endocrinol. Metab. 32, 980–993 (2021). https://doi.org/10.1016/J.TEM.2021.09.006

    Article  CAS  PubMed  Google Scholar 

  29. Sytnyk, V., Leshchyns’ka, I., Schachner, M.: Neural glycomics: the sweet side of nervous system functions. Cell. Mol. Life Sci. 78, 93–116 (2021). https://doi.org/10.1007/s00018-020-03578-9

  30. Rutishauser, U., Landmesser, L.: Polysialic acid in the vertebrate nervous system: A promoter of plasticity in cell-cell interactions. (1996). http://www.ncbi.nlm.nih.gov/pubmed/8888519

  31. Wang, B.: Molecular mechanism underlying sialic acid as an essential nutrient for brain development and cognition. Adv. Nutr. 3, 465S-472S (2012). https://doi.org/10.3945/an.112.001875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Morise, J., Takematsu, H., Oka, S.: The role of human natural killer-1 (HNK-1) carbohydrate in neuronal plasticity and disease. (2017). https://pubmed.ncbi.nlm.nih.gov/28709864/

  33. Hildebrandt, H., Dityatev, A.: Polysialic acid in brain development and synaptic plasticity. Top. Curr. Chem. 366, 55–96 (2013). https://doi.org/10.1007/128_2013_446

    Article  CAS  Google Scholar 

  34. Hanus, C., Geptin, H., Tushev, G., Garg, S., Alvarez-Castelao, B., Sambandan, S., Kochen, L., Hafner, A.-S., Langer, J.D., Schuman, E.M.: Unconventional secretory processing diversifies neuronal ion channel properties. Elife. 5, (2016). https://doi.org/10.7554/eLife.20609

  35. Kizuka, Y., Taniguchi, N.: Neural functions of bisecting GlcNAc. Glycoconj. J. (2018). https://doi.org/10.1007/s10719-018-9829-4

    Article  PubMed  Google Scholar 

  36. Kawade, H., Morise, J., Mishra, S.K., Tsujioka, S., Oka, S., Kizuka, Y.: Tissue-specific regulation of hnk-1 biosynthesis by bisecting glcnac. Molecules 26, 5176 (2021). https://doi.org/10.3390/molecules26175176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nakano, M., Mishra, S.K., Tokoro, Y., Sato, K., Nakajima, K., Yamaguchi, Y., Taniguchi, N., Kizuka, Y.: Bisecting GlcNAc is a general suppressor of terminal modification of N-glycan. Mol. Cell. Proteomics. 18, 2044–2057 (2019). https://doi.org/10.1074/mcp.RA119.001534

    Article  PubMed  PubMed Central  Google Scholar 

  38. Helm, J., Grünwald-Gruber, C., Thader, A., Urteil, J., Führer, J., Stenitzer, D., Maresch, D., Neumann, L., Pabst, M., Altmann, F.: Bisecting Lewis X in Hybrid-Type N-Glycans of Human Brain Revealed by Deep Structural Glycomics. Anal. Chem. 93, 15175–15182 (2021). https://doi.org/10.1021/acs.analchem.1c03793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Helm, J., Hirtler, L., Altmann, F.: Towards Mapping of the Human Brain N-Glycome with Standardized Graphitic Carbon Chromatography. Biomolecules 12, 1–20 (2022). https://doi.org/10.3390/biom12010085

    Article  CAS  Google Scholar 

  40. Krusius, T., Finne, J.: Structural Features of Tissue Glycoproteins. 379, 369–379 (1977)

    Google Scholar 

  41. Lee, J., Ha, S., Kim, M., Kim, S.-W., Yun, J., Ozcan, S., Hwang, H., Ji, I.J., Yin, D., Webster, M.J., Weickert, C.S., Kim, J.-H., Yoo, J.S., Grimm, R., Bahn, S., Shin, H.-S., An, H.J.: Spatial and temporal diversity of glycome expression in mammalian brain. Proc. Natl. Acad. Sci. 1–11 (2020). https://doi.org/10.1073/pnas.2014207117

  42. Williams, S.E., Noel, M., Lehoux, S., Cetinbas, M., Xavier, R.J., Sadreyev, R.I., Scolnick, E.M., Smoller, J.W., Cummings, R.D., Mealer, R.G.: Mammalian brain glycoproteins exhibit diminished glycan complexity compared to other tissues. Nat. Commun. 13, (2022). https://doi.org/10.1038/s41467-021-27781-9

  43. Greiner-Tollersrud, O.K.: The non-classical N-glycan processing pathway of bovine brain ecto-nucleotide phosphodiesterase/pyrophosphatase 6 (eNPP6) is brain specific and not due to mannose-6-phosphorylation. Neurochem. Res. 39, 2025–2029 (2014). https://doi.org/10.1007/s11064-014-1412-1

    Article  CAS  PubMed  Google Scholar 

  44. Parekh, R.B., Tsel, A.G.D., Dwek, R.A., Williams, F., Rademacher, T.W.: Tissue-specific N-glycosylation, site-specific oligosaccharide patters and lentil lectin recognition of rat Thy-1 patterns. 6, 1233–1244 (1987)

  45. Medzihradszky, K.F., Kaasik, K., Chalkley, R.J.: Tissue-Specific Glycosylation at the Glycopeptide Level. Mol. Cell. Proteomics. 14, 2103–2110 (2015). https://doi.org/10.1074/mcp.M115.050393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ji, I.J., Hua, S., Shin, D., Seo, N., Hwang, J.Y., Jang, I.-S., Kang, M.-G., Choi, J.-S., An, H.J.: Spatially-Resolved Exploration of the Mouse Brain Glycome by Tissue Glyco-Capture (TGC) and Nano-LC/MS. Anal. Chem. (2015). https://doi.org/10.1021/ac504339t

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kruse, J., Mailhammer, R., Wernecke, H., Faissner, A., Sommer, I., Goridis, C., Schachner, M.: Neural cell adhesion molecules and myelin-associated glycoprotein share a common carbohydrate moiety recognized by monoclonal antibodies L2 and HNK-1. Nature 311, 153–155 (1984). https://doi.org/10.1038/311153a0

    Article  CAS  PubMed  Google Scholar 

  48. Liedtke, S., Geyer, H., Wuhrer, M., Geyer, R., Frank, G., Gerardy-Schahn, R., Zähringer, U., Schachner, M.: Characterization of N-glycans from mouse brain neural cell adhesion molecule. Glycobiology 11, 373–384 (2001). https://doi.org/10.1093/glycob/11.5.373

    Article  CAS  PubMed  Google Scholar 

  49. Chou, D.K.H., Prasadarao, N., Koul, O., Jungalwala, F.B.: Developmental Expression of HNK-1-Reactive Antigens in Rat Cerebral Cortex and Molecular Heterogeneity of Sulfoglucuronylneolactotetraosylceramide in CNS Versus PNS. J. Neurochem. 57, 852–859 (1991). https://doi.org/10.1111/j.1471-4159.1991.tb08229.x

    Article  CAS  PubMed  Google Scholar 

  50. Zamze, S., Wing, D.R., Wormald, M.R., Hunter, A.P., Dwek, R.A., Harvey, D.J.: A family of novel, acidic N-glycans in Bowes melanoma tissue plasminogen activator have L2/HNK-1-bearing antennae, many with sulfation of the fucosylated chitobiose core. Eur. J. Biochem. 268, 4063–4078 (2001). https://doi.org/10.1046/j.1432-1327.2001.02320.x

    Article  CAS  PubMed  Google Scholar 

  51. Torii, T., Yoshimura, T., Narumi, M., Hitoshi, S., Takaki, Y., Tsuji, S., Ikenaka, K.: Determination of major sialylated N-glycans and identification of branched sialylated N-glycans that dynamically change their content during development in the mouse cerebral cortex. Glycoconj. J. 31, 671–683 (2014). https://doi.org/10.1007/s10719-014-9566-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Handa-Narumi, M., Yoshimura, T., Konishi, H., Fukata, Y., Manabe, Y., Tanaka, K., Bao, G., Kiyama, H., Fukase, K., Ikenaka, K.: Branched sialylated N-glycans are accumulated in brain synaptosomes and interact with Siglec-H. Cell Struct. Funct. 43, 141–152 (2018). https://doi.org/10.1247/csf.18009

    Article  PubMed  Google Scholar 

  53. Finne, J., Krusius, T., Rauvala, H., Hemminki, K.: The Disialosyl Group of Glycoproteins: Occurrence in Different Tissues and Cellular Membranes. Eur. J. Biochem. 77, 319–323 (1977). https://doi.org/10.1111/j.1432-1033.1977.tb11670.x

    Article  CAS  PubMed  Google Scholar 

  54. Sato, C., Fukuoka, H., Ohta, K., Matsuda, T., Koshino, R., Kobayashi, K., Troy, F.A., Kitajima, K.: Frequent occurrence of pre-existing α2→8-linked disialic and oligosialic acids with chain lengths up to 7 Sia residues in mammalian brain glycoproteins. J. Biol. Chem. 275, 15422–15431 (2000). https://doi.org/10.1074/jbc.275.20.15422

    Article  CAS  PubMed  Google Scholar 

  55. Finne, J.: Occurrence of unique polysialosyl carbohydrate units in glycoproteins of developing brain. J. Biol. Chem. 257, 11966–11970 (1982). https://doi.org/10.1016/s0021-9258(18)33661-5

    Article  CAS  PubMed  Google Scholar 

  56. Inoko, E., Nishiura, Y., Tanaka, H., Takahashi, T., Furukawa, K., Kitajima, K., Sato, C.: Developmental stage-dependent expression of an alpha2,8-trisialic acid unit on glycoproteins in mouse brain. Glycobiology 20, 916–928 (2010). https://doi.org/10.1093/glycob/cwq049

    Article  CAS  PubMed  Google Scholar 

  57. Ong, E., Nakayama, J., Angata, K., Reyes, L., Katsuyama, T., Arai, Y., Fukuda, M.: Developmental regulation of polysialic acid synthesis in mouse directed by two polysialyltransferases. PST and STX. Glycobiology. 8, 415–424 (1998). https://doi.org/10.1093/glycob/8.4.415

    Article  CAS  PubMed  Google Scholar 

  58. Zuber, C., Lackie, P.M., Catterall, W.A., Roth, J.: Polysialic acid is associated with sodium channels and the neural cell adhesion molecule N-CAM in adult rat brain. J. Biol. Chem. 267, 9965–9971 (1992)

    Article  CAS  Google Scholar 

  59. Sleat, D.E., Sohar, I., Lackland, H., Majercak, J., Lobel, P.: Rat brain contains high levels of mannose-6-phosphorylated glycoproteins including lysosomal enzymes and palmitoyl-protein thioesterase, an enzyme implicated in infantile neuronal lipofuscinosis. J. Biol. Chem. 271, 19191–19198 (1996)

    Article  CAS  Google Scholar 

  60. Klarić, T.S., Salopek, M., Micek, V., Gornik Kljaić, O., Lauc, G.: Post-natal developmental changes in the composition of the rat neocortical N-glycome. Glycobiology 31, 636–648 (2021). https://doi.org/10.1093/glycob/cwaa108

    Article  CAS  PubMed  Google Scholar 

  61. Jadot, M., Lin, L., Sleat, D.E., Sohar, I., Hsu, M.S., Pintar, J., Dubois, F., Wattiaux-De Coninck, S., Wattiaux, R., Lobel, P.: Subcellular localization of mannose 6-phosphate glycoproteins in rat brain. J. Biol. Chem. 274, 21104–21113 (1999)

    Article  CAS  Google Scholar 

  62. Sleat, D.E., Lackland, H., Wang, Y., Sohar, I., Xiao, G., Li, H., Lobel, P.: The human brain mannose 6-phosphate glycoproteome: a complex mixture composed of multiple isoforms of many soluble lysosomal proteins. Proteomics 5, 1520–1532 (2005). https://doi.org/10.1002/pmic.200401054

    Article  PubMed  Google Scholar 

  63. Gaunitz, S., Tjernberg, L.O., Schedin-Weiss, S.: The N-glycan profile in cortex and hippocampus is altered in Alzheimer disease. J. Neurochem. 159, 292–304 (2021). https://doi.org/10.1111/jnc.15202

    Article  CAS  PubMed  Google Scholar 

  64. Shimizu, H., Ochiai, K., Ikenaka, K., Mikoshiba, K., Hase, S.: Structures of N-linked sugar chains expressed mainly in mouse brain. J. Biochem. 114, 334–338 (1993)

    Article  CAS  Google Scholar 

  65. Naito-Matsui, Y., Davies, L.R.L., Takematsu, H., Chou, H.-H., Tangvoranuntakul, P., Carlin, A.F., Verhagen, A., Heyser, C.J., Yoo, S.-W., Choudhury, B., Paton, J.C., Paton, A.W., Varki, N.M., Schnaar, R.L., Varki, A.: Physiological Exploration of the Long-term Evolutionary Selection Against Expression of N -glycolylneuraminic Acid in the Brain. J. Biol. Chem. jbc.M116.768531 (2017). https://doi.org/10.1074/jbc.M116.768531

  66. Margolis, R.U., Margolis, R.K., Atherton, D.M.: Carbohydrate-peptide linkages in glycoproteins and mucopolysaccharides from brain. J. Neurochem. 19, 2317–2324 (1972)

    Article  CAS  Google Scholar 

  67. Barboza, M., Solakyildirim, K., Knotts, T.A., Luke, J., Gareau, M.G., Raybould, H.E., Lebrilla, C.B.: Region-specific cell membrane N-glycome of functional mouse brain areas revealed by nanoLC-MS analysis. Mol. Cell. Proteomics. 20, 100130 (2021). https://doi.org/10.1016/j.mcpro.2021.100130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Altman, M.O., Gagneux, P.: Absence of Neu5Gc and Presence of Anti-Neu5Gc Antibodies in Humans—An Evolutionary Perspective. Front. Immunol. 10, 789 (2019). https://doi.org/10.3389/fimmu.2019.00789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Davies, L.R.L., Varki, A.: Why Is N-Glycolylneuraminic Acid Rare in the Vertebrate Brain? Top. Curr. Chem. 366, 31–54 (2015). https://doi.org/10.1007/128_2013_419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Margolis, R.K., Margolis, R.U.: Sulfated glycopeptides from rat brain glycoproteins. Biochemistry 9, 4389–4396 (1970)

    Article  CAS  Google Scholar 

  71. Krusius, T., Finne, J.: Characterization of a Novel Sugar Sequence from Rat-Brain Glycoproteins Containing Fucose and Sialic Acid. Eur. J. Biochem. 84, 395–403 (1978). https://doi.org/10.1111/j.1432-1033.1978.tb12180.x

    Article  CAS  PubMed  Google Scholar 

  72. Ohkawa, Y., Kizuka, Y., Takata, M., Nakano, M., Ito, E., Mishra, S.K., Akatsuka, H., Harada, Y., Taniguchi, N.: Peptide sequence mapping around bisecting glcnac-bearing n-glycans in mouse brain. Int. J. Mol. Sci. 22, 8579 (2021). https://doi.org/10.3390/ijms22168579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dahmen, A.C., Fergen, M.T., Laurini, C., Schmitz, B., Loke, I., Thaysen-Andersen, M., Diestel, S.: Paucimannosidic glycoepitopes are functionally involved in proliferation of neural progenitor cells in the subventricular zone. Glycobiology 25, 869–880 (2015). https://doi.org/10.1093/glycob/cwv027

    Article  CAS  PubMed  Google Scholar 

  74. Ishii, A., Hitoshi, S., Fujimoto, I., Torii, T., Sakuma, K., Nakakita, S.I., Hase, S., Ikenaka, K.: Developmental changes in the expression of glycogenes and the content of N-glycans in the mouse cerebral cortex. Glycobiology 17, 261–276 (2007). https://doi.org/10.1093/glycob/cwl076

    Article  CAS  PubMed  Google Scholar 

  75. Albach, C., Klein, R.A.: Do Rodent and Human Brains Have Different N-Glycosylation Patterns ? Biol Chem. 382, 187–194 (2001)

    Article  CAS  Google Scholar 

  76. Hawkinson, T.R., Clarke, H.A., Young, L.E.A., Conroy, L.R., Markussen, K.H., Kerch, K.M., Johnson, L.A., Nelson, P.T., Wang, C., Allison, D.B., Gentry, M.S., Sun, R.C.: In situ spatial glycomic imaging of mouse and human Alzheimer’s disease brains. Alzheimer’s Dement. (2021). https://doi.org/10.1002/alz.12523

    Article  Google Scholar 

  77. Yamakawa, N., Vanbeselaere, J., Chang, L.-Y., Yu, S.-Y., Ducrocq, L., Harduin-Lepers, A., Kurata, J., Aoki-Kinoshita, K.F., Sato, C., Khoo, K.-H., Kitajima, K., Guerardel, Y.: Systems glycomics of adult zebrafish identifies organ-specific sialylation and glycosylation patterns. Nat. Commun. 9, 4647 (2018). https://doi.org/10.1038/s41467-018-06950-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Samal, J., Saldova, R., Rudd, P.M., Pandit, A., O’Flaherty, R.: Region-Specific Characterization of N-Glycans in the Striatum and Substantia Nigra of an Adult Rodent Brain. Anal. Chem. 92, 12842–12851 (2020). https://doi.org/10.1021/acs.analchem.0c01206

    Article  CAS  PubMed  Google Scholar 

  79. Hoffmann, A., Nimtz, M., Getzlaff, R., Conradt, H.S.: “Brain-type” N-glycosylation of asialo-transferrin from human cerebrospinal fluid. FEBS Lett. 359, 164–168 (1995). https://doi.org/10.1016/0014-5793(95)00034-7

    Article  CAS  PubMed  Google Scholar 

  80. Hoffmann, A., Nimtz, M., Wurster, U., Conradt, H.S.: Carbohydrate Structures of β-Trace Protein from Human Cerebrospinal Fluid: Evidence for “Brain-Type”N-Glycosylation. J. Neurochem. 63, 2185–2196 (1994). https://doi.org/10.1046/j.1471-4159.1994.63062185.x

    Article  CAS  PubMed  Google Scholar 

  81. Silbereis, J.C., Pochareddy, S., Zhu, Y., Li, M., Sestan, N.: The Cellular and Molecular Landscapes of the Developing Human Central Nervous System. (2016). https://pubmed.ncbi.nlm.nih.gov/26796689/

  82. Krusius, T., Finne, J., Kärkkäinen, J., Järnefelt, J.: Neutral and acidic glycopeptides in adult and developing rat brain. BBA - Protein Struct. 365, 80–92 (1974). https://doi.org/10.1016/0005-2795(74)90252-9

    Article  CAS  Google Scholar 

  83. Margolis, R.K., Preti, C., Lai, D., Margolis, R.U.: Developmental changes in brain glycoproteins. Brain Res. 112, 363–369 (1976). https://doi.org/10.1016/0006-8993(76)90290-0

    Article  CAS  PubMed  Google Scholar 

  84. Nakakita, S., Natsuka, S., Ikenaka, K., Hase, S.: Development-dependent expression of complex-type sugar chains specific to mouse brain. J. Biochem. 123, 1164–1168 (1998)

    Article  CAS  Google Scholar 

  85. Okamoto, Y.S., Omichi, K., Yamanaka, S., Ikenaka, K., Science, N., Women, O., National, O., Yokohama, Y.: Conversion of Brain-specific Complex Type Sugar Chains by N-Acetyl-B-D-Hexosaminidase B. J Biochem. 125, 537–540 (1999)

    Article  CAS  Google Scholar 

  86. Masuda, T., Amann, L., Sankowski, R., Staszewski, O., Lenz, M., d´Errico, P., Snaidero, N., Costa Jordão, M.J., Böttcher, C., Kierdorf, K., Jung, S., Priller, J., Misgeld, T., Vlachos, A., Luehmann, M.M., Knobeloch, K.P., Prinz, M.: Novel Hexb-based tools for studying microglia in the CNS. Nat. Immunol. 21, 802–815 (2020). https://doi.org/10.1038/s41590-020-0707-4

  87. Ishii, A., Ikenaka, K., Pfeiffer, S.E.: The N-glycan profile of mouse myelin, a specialized central nervous system membrane. J. Neurochem. 103, 25–31 (2007). https://doi.org/10.1111/j.1471-4159.2007.04823.x

    Article  CAS  PubMed  Google Scholar 

  88. Rutishauser, U.: Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nat. Rev. Neurosci. 9, 26–35 (2008). https://doi.org/10.1038/nrn2285

    Article  CAS  PubMed  Google Scholar 

  89. Mori, A., Yang, Y., Takahashi, Y., Hane, M., Kitajima, K., Sato, C.: Combinational analyses with multiple methods reveal the existence of several forms of polysialylated neural cell adhesion molecule in mouse developing brains. Int. J. Mol. Sci. 21, 1–20 (2020). https://doi.org/10.3390/ijms21165892

    Article  CAS  Google Scholar 

  90. Suzuki, M., Suzuki, M., Nakayama, J., Suzuki, A., Angata, K., Chen, S., Sakai, K., Hagihara, K., Yamaguchi, Y., Fukuda, M.: Polysialic acid facilitates tumor invasion by glioma cells. Glycobiology 15, 887–894 (2005). https://doi.org/10.1093/glycob/cwi071

    Article  CAS  PubMed  Google Scholar 

  91. Petridis, A.K., Wedderkopp, H., Hugo, H.H., Maximilian Mehdorn, H.: Polysialic acid overexpression in malignant astrocytomas. Acta Neurochir. (Wien) 151, 601–603 (2009). https://doi.org/10.1007/s00701-009-0324-3

    Article  Google Scholar 

  92. Sun, H., Zhou, Y., Jiang, H., Xu, Y.: Elucidation of Functional Roles of Sialic Acids in Cancer Migration. Front. Oncol. 10, 401 (2020). https://doi.org/10.3389/fonc.2020.00401

    Article  PubMed  PubMed Central  Google Scholar 

  93. Fu, S.C., Gurd, J.W.: Developmental Changes in the Oligosaccharide Composition of Synaptic Junctional Glycoproteins. J. Neurochem. 41, 1726–1734 (1983). https://doi.org/10.1111/j.1471-4159.1983.tb00886.x

    Article  CAS  PubMed  Google Scholar 

  94. Trinidad, J.C., Schoepfer, R., Burlingame., A.L., Medzihradszky, K.F.: N- and O-Glycosylation in the murine synaptosome. Mol. Cell. Proteomics. 12, 3474–3488 (2013). https://doi.org/10.1074/mcp.M113.030007

    Article  CAS  Google Scholar 

  95. Brunngraber, E.G., Webster, J.C.: Changes in glycoprotein carbohydrate content in the aging human brain. Neurochem. Res. 11, 579–588 (1986). https://doi.org/10.1007/BF00965327

    Article  CAS  PubMed  Google Scholar 

  96. Simon, F., Bork, K., Gnanapragassam, V.S., Baldensperger, T., Glomb, M.A., Sanzo, S.D., Ori, A., Horstkorte, R.: Increased expression of immature mannose-containing glycoproteins and sialic acid in aged mouse brains. Int. J. Mol. Sci. 20, 6118 (2019). https://doi.org/10.3390/ijms20246118

    Article  CAS  PubMed Central  Google Scholar 

  97. Sato, Y., Kimura, M., Endo, T.: Comparison of lectin-binding patterns between young adult and older rat glycoproteins in the brain. Glycoconj. J. 15, 1133–1140 (1998). https://doi.org/10.1023/A:1006911821339

    Article  CAS  PubMed  Google Scholar 

  98. Bennett, K.D., Bondareff, W.: Age related differences in binding of Concanavalin a to plasma membranes of isolated neurons. Am. J. Anat. 150, 175–184 (1977). https://doi.org/10.1002/aja.1001500112

    Article  CAS  PubMed  Google Scholar 

  99. Raghunathan, R., Polinski, N.K., Klein, J.A., Hogan, J.D., Shao, C., Khatri, K., Leon, D., McComb, M.E., Manfredsson, F.P., Sortwell, C.E., Zaia, J.: Glycomic and Proteomic Changes in Aging Brain Nigrostriatal Pathway. Mol. Cell. Proteomics. 17, 1778–1787 (2018). https://doi.org/10.1074/mcp.RA118.000680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tabata, H.: Diverse subtypes of astrocytes and their development during corticogenesis. Front. Neurosci. 9, 114 (2015). https://doi.org/10.3389/FNINS.2015.00114

    Article  PubMed  PubMed Central  Google Scholar 

  101. Furukawa, J.I., Tsuda, M., Okada, K., Kimura, T., Piao, J., Tanaka, S., Shinohara, Y.: Comprehensive glycomics of a multistep human brain tumor model reveals specific glycosylation patterns related to malignancy. PLoS One. 10, (2015). https://doi.org/10.1371/journal.pone.0128300

  102. Salas, I.H., Burgado, J., Allen, N.J.: Glia: victims or villains of the aging brain? Neurobiol. Dis. 143, (2020). https://doi.org/10.1016/j.nbd.2020.105008

  103. Sato, Y., Liu, C., Wojczyk, B.S., Kobata, A., Spitalnik, S.L., Endo, T.: Study of the sugar chains of recombinant human amyloid precursor protein produced by Chinese hamster ovary cells. Biochim. Biophys. Acta. 1472, 344–358 (1999). https://doi.org/10.1016/S0304-4165(99)00140-3

    Article  CAS  PubMed  Google Scholar 

  104. Sato, Y., Akimoto, Y., Kawakami, H., Hirano, H., Endo, T.: Location of sialoglycoconjugates containing the Sia(alpha)2–3Gal and Sia(alpha)2–6Gal groups in the rat hippocampus and the effect of aging on their expression. J. Histochem. Cytochem. 49, 1311–1319 (2001)

    Article  CAS  Google Scholar 

  105. Sasaki, T., Akimoto, Y., Sato, Y., Kawakami, H., Hirano, H., Endo, T.: Distribution of sialoglycoconjugates in the rat cerebellum and its change with aging. J. Histochem. Cytochem. 50, 1179–1186 (2002)

    Article  CAS  Google Scholar 

  106. Sato, Y., Endo, T.: Differential expression of sialoglycoproteins in the rat hippocampus and its changes during aging. Neurosci. Lett. 262, 49–52 (1999). https://doi.org/10.1016/S0304-3940(99)00032-4

    Article  CAS  PubMed  Google Scholar 

  107. Berra, B., Rapelli, S.: Modifications of plasma membrane components during brain development induced by dietary treatmens. Clin. Neuropharmacol. 7, S191 (1984). https://doi.org/10.1097/00002826-198406001-00175

    Article  Google Scholar 

  108. Carlson, S.E., House, S.G.: Oral and intraperitoneal administration of N-acetylneuraminic acid: Effect on rat cerebral and cerebellar N-acetylneuraminic acid. J. Nutr. 116, 881–886 (1986). https://doi.org/10.1093/jn/116.5.881

    Article  CAS  PubMed  Google Scholar 

  109. Wang, B., McVeagh, P., Petocz, P., Brand-Miller, J.: Brain ganglioside and glycoprotein sialic acid in breastfed compared with formula-fed infants. Am. J. Clin. Nutr. 78, 1024–1029 (2003). https://doi.org/10.1093/ajcn/78.5.1024

    Article  CAS  PubMed  Google Scholar 

  110. Barboza, M., Krueger, M.R., Honeycutt, M., Lebrilla, C.B., Raybould, H.: Multi-omics Studies Reveal Altered Hippocampal N-Glycosylation in High Fat Diet-Induced Obese Mice. FASEB J. 34, 1–1 (2020). https://doi.org/10.1096/fasebj.2020.34.s1.06871

    Article  Google Scholar 

  111. Sy, M., Brandt, A.U., Lee, S.U., Newton, B.L., Pawling, J., Golzar, A., Rahman, A.M.A., Yu, Z., Cooper, G., Scheel, M., Paul, F., Dennis, J.W., Demetriou, M.: N-acetylglucosamine drives myelination by triggering oligodendrocyte precursor cell differentiation. J. Biol. Chem. 295, 17413–17424 (2020). https://doi.org/10.1074/jbc.RA120.015595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Grigorian, A., Araujo, L., Naidu, N.N., Place, D.J., Choudhury, B., Demetriou, M.: N-acetylglucosamine inhibits T-helper 1 (Th1)/T-helper 17 (Th17) cell responses and treats experimental autoimmune encephalomyelitis. J. Biol. Chem. 286, 40133–40141 (2011). https://doi.org/10.1074/JBC.M111.277814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Witters, P., Tahata, S., Barone, R., Õunap, K., Salvarinova, R., Grønborg, S., Hoganson, G., Scaglia, F., Lewis, A.M., Mori, M., Sykut-Cegielska, J., Edmondson, A., He, M., Morava, E.: Clinical and biochemical improvement with galactose supplementation in SLC35A2-CDG. Genet. Med. 22, 1102–1107 (2020). https://doi.org/10.1038/S41436-020-0767-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kölliker-Frers, R., Udovin, L., Otero-Losada, M., Kobiec, T., Herrera, M.I., Palacios, J., Razzitte, G., Capani, F.: Neuroinflammation: An Integrating Overview of Reactive-Neuroimmune Cell Interactions in Health and Disease. Mediators Inflamm. (2021). https://doi.org/10.1155/2021/9999146

    Article  PubMed  PubMed Central  Google Scholar 

  115. Rebelo, A.L., Chevalier, M.T., Russo, L., Pandit, A.: Role and therapeutic implications of protein glycosylation in neuroinflammation. Trends Mol. Med. xx, 1–20 (2022). https://doi.org/10.1016/j.molmed.2022.01.004

  116. Rebelo, A.L., Gubinelli, F., Roost, P., Jan, C., Brouillet, E., Van Camp, N., Drake, R.R., Saldova, R., Pandit, A.: Complete spatial characterisation of N-glycosylation upon striatal neuroinflammation in the rodent brain. J. Neuroinflammation. 18, 116 (2021). https://doi.org/10.1186/s12974-021-02163-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Régnier-Vigouroux, A.: The mannose receptor in the brain. Int. Rev. Cytol. 226, 321–342 (2003). https://doi.org/10.1016/S0074-7696(03)01006-4

    Article  PubMed  Google Scholar 

  118. Demina, E.P., Pierre, W.C., Nguyen, A.L.A., Londono, I., Reiz, B., Zou, C., Chakraberty, R., Cairo, C.W., Pshezhetsky, A. V., Lodygensky, G.A.: Persistent reduction in sialylation of cerebral glycoproteins following postnatal inflammatory exposure 11 Medical and Health Sciences 1109 Neurosciences. J. Neuroinflammation. 15, (2018). https://doi.org/10.1186/s12974-018-1367-2

  119. Allendorf, D.H., Puigdellívol, M., Brown, G.C.: Activated microglia desialylate their surface, stimulating complement receptor 3-mediated phagocytosis of neurons. Glia 68, 989–998 (2020). https://doi.org/10.1002/glia.23757

    Article  PubMed  Google Scholar 

  120. Allendorf, D.H., Franssen, E.H., Brown, G.C.: Lipopolysaccharide activates microglia via neuraminidase 1 desialylation of Toll-like Receptor 4. J. Neurochem. 155, 403–416 (2020). https://doi.org/10.1111/jnc.15024

    Article  CAS  PubMed  Google Scholar 

  121. Sumida, M., Hane, M., Yabe, U., Shimoda, Y., Pearce, O.M.T., Kiso, M., Miyagi, T., Sawada, M., Varki, A., Kitajima, K., Sato, C.: Rapid trimming of cell surface polysialic acid (PolySia) by exovesicular sialidase triggers release of preexisting surface neurotrophin. J. Biol. Chem. 290, 13202–13214 (2015). https://doi.org/10.1074/jbc.M115.638759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Russell, G., Lightman, S.: The human stress response. Nat. Rev. Endocrinol. 15, 525–534 (2019). https://doi.org/10.1038/S41574-019-0228-0

    Article  PubMed  Google Scholar 

  123. Konjevod, M., Tudor, L., Svob Strac, D., Nedic Erjavec, G., Barbas, C., Zarkovic, N., Nikolac Perkovic, M., Uzun, S., Kozumplik, O., Lauc, G., Pivac, N.: Metabolomic and glycomic findings in posttraumatic stress disorder. Prog. Neuro-Psychopharmacology Biol. Psychiatry. 88, 181–193 (2019). https://doi.org/10.1016/j.pnpbp.2018.07.014

    Article  CAS  Google Scholar 

  124. Fazekas, C.L., Sipos, E., Klaric, T., Török, B., Bellardie, M., Erjave, G.N., Perkovic, M.N., Lauc, G., Pivac, N., Zelena, D.: Searching for glycomic biomarkers for predicting resilience and vulnerability in a rat model of posttraumatic stress disorder. Stress. 29, 1–17 (2020). https://doi.org/10.1080/10253890.2020.1795121

    Article  CAS  Google Scholar 

  125. Minami, A., Meguro, Y., Ishibashi, S., Ishii, A., Shiratori, M., Sai, S., Horii, Y., Shimizu, H., Fukumoto, H., Shimba, S., Taguchi, R., Takahashi, T., Otsubo, T., Ikeda, K., Suzuki, T.: Rapid regulation of sialidase activity in response to neural activity and sialic acid removal during memory processing in rat hippocampus. J. Biol. Chem. 292, 5645–5654 (2017). https://doi.org/10.1074/jbc.M116.764357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Anagnostaras, S.G., Gale, G.D., Fanselow, M.S.: Hippocampus and contextual fear conditioning: Recent controversies and advances. Hippocampus 11, 8–17 (2001). https://doi.org/10.1002/1098-1063(2001)11:1%3c8::AID-HIPO1015%3e3.0.CO;2-7

    Article  CAS  PubMed  Google Scholar 

  127. McEwen, B.S., Sapolsky, R.M.: Stress and cognitive function. Curr. Opin. Neurobiol. 5, 205–216 (1995). https://doi.org/10.1016/0959-4388(95)80028-X

    Article  CAS  PubMed  Google Scholar 

  128. Murman, D.L.: The Impact of Age on Cognition. Semin. Hear. 36, 111 (2015). https://doi.org/10.1055/S-0035-1555115

    Article  PubMed  PubMed Central  Google Scholar 

  129. Gorelick, P.B.: Role of inflammation in cognitive impairment: results of observational epidemiological studies and clinical trials. Ann. N. Y. Acad. Sci. 1207, 155–162 (2010). https://doi.org/10.1111/J.1749-6632.2010.05726.X

    Article  PubMed  Google Scholar 

  130. Di Benedetto, S., Müller, L., Wenger, E., Düzel, S., Pawelec, G.: Contribution of neuroinflammation and immunity to brain aging and the mitigating effects of physical and cognitive interventions. Neurosci. Biobehav. Rev. 75, 114–128 (2017). https://doi.org/10.1016/J.NEUBIOREV.2017.01.044

    Article  PubMed  Google Scholar 

  131. Sugama, S., Kakinuma, Y.: Stress and brain immunity: Microglial homeostasis through hypothalamus-pituitary-adrenal gland axis and sympathetic nervous system. Brain, Behav. Immun. - Heal. 7, 100111 (2020). https://doi.org/10.1016/J.BBIH.2020.100111

  132. Zia, A., Pourbagher-Shahri, A.M., Farkhondeh, T., Samarghandian, S.: Molecular and cellular pathways contributing to brain aging. Behav. Brain Funct. 17, 1–30 (2021). https://doi.org/10.1186/s12993-021-00179-9

    Article  CAS  Google Scholar 

  133. Sparkman, N.L., Johnson, R.W.: Neuroinflammation Associated with Aging Sensitizes the Brain to the Effects of Infection or Stress. NeuroImmunoModulation 15, 323 (2008). https://doi.org/10.1159/000156474

    Article  CAS  PubMed  Google Scholar 

  134. Cheung, P., Pawling, J., Partridge, E.A., Sukhu, B., Grynpas, M., Dennis, J.W.: Metabolic homeostasis and tissue renewal are dependent on beta1,6GlcNAc-branched N-glycans. Glycobiology 17, 828–837 (2007). https://doi.org/10.1093/GLYCOB/CWM048

    Article  CAS  PubMed  Google Scholar 

  135. Denzel, M.S., Storm, N.J., Gutschmidt, A., Baddi, R., Hinze, Y., Jarosch, E., Sommer, T., Hoppe, T., Antebi, A.: Hexosamine pathway metabolites enhance protein quality control and prolong life. Cell 156, 1167–1178 (2014). https://doi.org/10.1016/J.CELL.2014.01.061

    Article  CAS  PubMed  Google Scholar 

  136. Cindrić, A., Krištić, J., Martinić Kavur, M., Pezer, M.: Glycosylation and Aging. Adv. Exp. Med. Biol. 1325, 341–373 (2021). https://doi.org/10.1007/978-3-030-70115-4_17

    Article  PubMed  Google Scholar 

  137. Barone, R., Sturiale, L., Palmigiano, A., Zappia, M., Garozzo, D.: Glycomics of pediatric and adulthood diseases of the central nervous system. J. Proteomics. 75, 5123–5139 (2012). https://doi.org/10.1016/j.jprot.2012.07.007

    Article  CAS  PubMed  Google Scholar 

  138. Kizuka, Y., Kitazume, S., Taniguchi, N.: N-glycan and Alzheimer’s disease. Biochim. Biophys. acta. Gen. Subj. 1861, 2447–2454 (2017). https://doi.org/10.1016/J.BBAGEN.2017.04.012

    Article  CAS  PubMed  Google Scholar 

  139. Wang, J.Z., Grundke-Iqbal, I., Iqbal, K.: Glycosylation of microtubule-associated protein tau: an abnormal posttranslational modification in Alzheimer’s disease. Nat. Med. 2, 871–875 (1996). https://doi.org/10.1038/NM0896-871

    Article  CAS  PubMed  Google Scholar 

  140. Takahashi, M., Tsujioka, Y., Yamada, T., Tsuboi, Y., Okada, H., Yamamoto, T., Liposits, Z.: Glycosylation of microtubule-associated protein tau in Alzheimer’s disease brain. Acta Neuropathol. 97, 635–641 (1999). https://doi.org/10.1007/S004010051040

    Article  CAS  PubMed  Google Scholar 

  141. Sato, Y., Naito, Y., Grundke-Iqbal, I., Iqbal, K., Endo, T.: Analysis of N-glycans of pathological tau: possible occurrence of aberrant processing of tau in Alzheimer’s disease. FEBS Lett. 496, 152–160 (2001). https://doi.org/10.1016/S0014-5793(01)02421-8

    Article  CAS  PubMed  Google Scholar 

  142. Liu, F., Zaidi, T., Iqbal, K., Grundke-Iqbal, I., Merkle, R.K., Gong, C.X.: Role of glycosylation in hyperphosphorylation of tau in Alzheimer’s disease. FEBS Lett. 512, 101–106 (2002). https://doi.org/10.1016/S0014-5793(02)02228-7

    Article  CAS  PubMed  Google Scholar 

  143. Boix, C.P., Lopez-Font, I., Cuchillo-Ibañez, I., Sáez-Valero, J.: Amyloid precursor protein glycosylation is altered in the brain of patients with Alzheimer’s disease. Alzheimers. Res. Ther. 12, (2020). https://doi.org/10.1186/S13195-020-00664-9

  144. Akasaka-Manya, K., Manya, H., Sakurai, Y., Wojczyk, B.S., Spitalnik, S.L., Endo, T.: Increased bisecting and core-fucosylated N-glycans on mutant human amyloid precursor proteins. Glycoconj. J. 25, 775–786 (2008). https://doi.org/10.1007/S10719-008-9140-X

    Article  CAS  PubMed  Google Scholar 

  145. Akasaka-Manya, K., Manya, H., Sakurai, Y., Wojczyk, B.S., Kozutsumi, Y., Saito, Y., Taniguchi, N., Murayama, S., Spitalnik, S.L., Endo, T.: Protective effect of N-glycan bisecting GlcNAc residues on β-amyloid production in Alzheimer’s disease. Glycobiology 20, 99–106 (2010). https://doi.org/10.1093/glycob/cwp152

    Article  CAS  PubMed  Google Scholar 

  146. Murray, H.C., Low, V.F., Swanson, M.E.V., Dieriks, B.V., Turner, C., Faull, R.L.M., Curtis, M.A.: Distribution of PSA-NCAM in normal, Alzheimer’s and Parkinson’s disease human brain. Neuroscience 330, 359–375 (2016). https://doi.org/10.1016/j.neuroscience.2016.06.003

    Article  CAS  PubMed  Google Scholar 

  147. Owen, J.B., Domenico, F.D., Suitana, R., Perluigi, M., Cini, C., Pierce, W.M., Butterfield, D.A.: Proteomics-determined differences in the concanavalin-A-fractionated proteome of hippocampus and inferior parietal lobule in subjects with alzheimer’s disease and mild cognitive impairment: Implications for progression of AD. J. Proteome Res. 8, 471–482 (2009). https://doi.org/10.1021/pr800667a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Di Domenico, F., Owen, J.B., Sultana, R., Sowell, R.A., Perluigi, M., Cini, C., Cai, J., Pierce, W.M., Butterfield, D.A.: The wheat germ agglutinin-fractionated proteome of subjects with Alzheimer’s disease and mild cognitive impairment hippocampus and inferior parietal lobule: Implications for disease pathogenesis and progression. J. Neurosci. Res. 88, 3566–3577 (2010). https://doi.org/10.1002/JNR.22528

    Article  PubMed  Google Scholar 

  149. Yu, L., Huo, Z., Yang, J., Palma-Gudiel, H., Boyle, P.A., Schneider, J.A., Bennett, D.A., Zhao, J.: Human Brain and Blood N-Glycome Profiling in Alzheimer’s Disease and Alzheimer’s Disease-Related Dementias. Front. Aging Neurosci. 13, (2021). https://doi.org/10.3389/fnagi.2021.765259

  150. Cast, T.P., Boesch, D.J., Smyth, K., Shaw, A.E., Ghebria, M., Chanda, S.: An autism-associated mutation impairs neuroligin-4 glycosylation and enhances excitatory synaptic transmission in human neurons. J. Neurosci. 41, 392–407 (2021). https://doi.org/10.1523/JNEUROSCI.0404-20.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Yamamoto, H., Saito, T., Kaneko, Y., Kersey, D., Yong, V.W., Bremer, E.G., Mkrdichian, E., Cerullo, L., Leestma, J., Moskal, J.R.: α2,3-Sialyltransferase mRNA and α2,3-linked glycoprotein sialylation are increased in malignant gliomas. Brain Res. 755, 175–179 (1997). https://doi.org/10.1016/S0006-8993(97)00241-2

    Article  CAS  PubMed  Google Scholar 

  152. Kaneko, Y., Yamamoto, H., Kersey, D.S., Colley, K.J., Leestma, J.E., Moskal, J.R.: The expression of Galβ 1,4GlcNAc α2,6 sialyltransferase and α2,6-linked sialoglycoconjugates in human brain tumors. Acta Neuropathol. 91, 284–292 (1996). https://doi.org/10.1007/s004010050427

    Article  CAS  PubMed  Google Scholar 

  153. Yamamoto, H., Kaneko, Y., Rebbaa, A., Bremer, E.G., Moskal, J.R.: α2,6-sialyltransferase gene transfection into a human glioma cell line (U373 MG) results in decreased invasivity. J. Neurochem. 68, 2566–2576 (1997). https://doi.org/10.1046/j.1471-4159.1997.68062566.x

    Article  CAS  PubMed  Google Scholar 

  154. Yamamoto, H., Oviedo, A., Sweeley, C., Saito, T., Moskal, J.R.: α2, 6-sialylation of cell-surface N-glycans inhibits glioma formation in vivo. Cancer Res. 61, 6822–6829 (2001)

    CAS  PubMed  Google Scholar 

  155. Son, M.J., Woolard, K., Nam, D.H., Lee, J., Fine, H.A.: SSEA-1 Is an Enrichment Marker for Tumor-Initiating Cells in Human Glioblastoma. Cell Stem Cell 4, 440–452 (2009). https://doi.org/10.1016/j.stem.2009.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Amoureux, M.C., Coulibaly, B., Chinot, O., Loundou, A., Metellus, P., Rougon, G., Figarella-Branger, D.: Polysialic acid neural cell adhesion molecule (psa-ncam) is an adverse prognosis factor in glioblastoma, and regulates olig2 expression in glioma cell lines. BMC Cancer. 10, (2010). https://doi.org/10.1186/1471-2407-10-91

  157. Padhiar, A.A., Fan, J., Tang, Y., Yu, J., Wang, S., Liu, L., Niang, B., Annani-akollor, M.E., Wang, L., Wang, Q., Zhang, J.: Upregulated β1-6 branch N-glycan marks early gliomagenesis but exhibited biphasic expression in the progression of astrocytic glioma. Am J Cancer Res. 5, 1101–1116 (2015)

    PubMed  PubMed Central  Google Scholar 

  158. Yamamoto, H., Swoger, J., Greene, S., Saito, T., Hurh, J., Sweeley, C., Leestma, J., Mkrdichian, E., Cerullo, L., Nishikawa, A., Ihara, Y., Taniguchi, N., Moskal, J.R.: β1,6-N-acethylglucosamine-bearing N-glycans in human gliomas: Implications for a role in regulating invasivity. Cancer Res. 60, 134–142 (2000)

    CAS  PubMed  Google Scholar 

  159. Marhuenda, E., Fabre, C., Zhang, C., Martin-Fernandez, M., Iskratsch, T., Saleh, A., Bauchet, L., Cambedouzou, J., Hugnot, J.P., Duffau, H., Dennis, J.W., Cornu, D., Bakalara, N.: Glioma stem cells invasive phenotype at optimal stiffness is driven by MGAT5 dependent mechanosensing. J. Exp. Clin. Cancer Res. 40, (2021). https://doi.org/10.1186/s13046-021-01925-7

  160. Xu, S., Zhu, X., Zhang, S., Yin, S., Zhou, L., Chen, C., Gu, J.: Over-expression of β-1,4-galactosyltransferase I, II, and V in human astrocytoma. J. Cancer Res. Clin. Oncol. 127, 502–506 (2001). https://doi.org/10.1007/s004320100246

    Article  CAS  PubMed  Google Scholar 

  161. Jiang, J., Chen, X., Shen, J., Wei, Y., Wu, T., Yang, Y., Wang, H., Zong, H., Yang, J., Zhang, S., Xie, J., Kong, X., Liu, W., Gu, J.: β1,4-Galactosyltransferase V functions as a positive growth regulator in glioma. J. Biol. Chem. 281, 9482–9489 (2006). https://doi.org/10.1074/jbc.M504489200

    Article  CAS  PubMed  Google Scholar 

  162. Gizaw, S.T., Koda, T., Amano, M., Kamimura, K., Ohashi, T., Hinou, H., Nishimura, S.I.: A comprehensive glycome profiling of Huntington’s disease transgenic mice. Biochim. Biophys. Acta - Gen. Subj. 1850, 1704–1718 (2015). https://doi.org/10.1016/j.bbagen.2015.04.006

    Article  CAS  Google Scholar 

  163. Lee, S.U., Grigorian, A., Pawling, J., Chen, I.J., Gao, G., Mozaffar, T., McKerlie, C., Demetriou, M.: N-glycan processing deficiency promotes spontaneous inflammatory demyelination and neurodegeneration. J. Biol. Chem. 282, 33725–33734 (2007). https://doi.org/10.1074/jbc.M704839200

    Article  CAS  PubMed  Google Scholar 

  164. Charles, P., Reynolds, R., Seilhean, D., Rougon, G., Aigrot, M.S., Niezgoda, A., Zalc, B., Lubetzki, C.: Re-expression of PSA-NCAM by demyelinated axons: an inhibitor of remyelination in multiple sclerosis? Brain 125, 1972–1979 (2002). https://doi.org/10.1093/BRAIN/AWF216

    Article  PubMed  Google Scholar 

  165. Barbeau, D., Liang, J.J., Robitaille, Y., Quirion, R., Srivastava, L.K.: Decreased expression of the embryonic form of the neural cell adhesion molecule in schizophrenic brains. Proc. Natl. Acad. Sci. U. S. A. 92, 2785–2789 (1995). https://doi.org/10.1073/pnas.92.7.2785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Gilabert-Juan, J., Varea, E., Guirado, R., Blasco-Ibáñez, J.M., Crespo, C., Nácher, J.: Alterations in the expression of PSA-NCAM and synaptic proteins in the dorsolateral prefrontal cortex of psychiatric disorder patients. Neurosci. Lett. 530, 97–102 (2012). https://doi.org/10.1016/J.NEULET.2012.09.032

    Article  CAS  PubMed  Google Scholar 

  167. Bauer, D., Haroutunian, V., Meador-Woodruff, J.H., McCullumsmith, R.E.: Abnormal glycosylation of EAAT1 and EAAT2 in prefrontal cortex of elderly patients with schizophrenia. Schizophr. Res. 117, 92–98 (2010). https://doi.org/10.1016/j.schres.2009.07.025

    Article  PubMed  Google Scholar 

  168. Tucholski, J., Simmons, M.S., Pinner, A.L., McMillan, L.D., Haroutunian, V., Meador-Woodruff, J.H.: N-linked glycosylation of cortical N-methyl-D-aspartate and kainate receptor subunits in schizophrenia. NeuroReport 24, 688–691 (2013). https://doi.org/10.1097/WNR.0b013e328363bd8a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Tucholski, J., Simmons, M.S., Pinner, A.L., Haroutunian, V., McCullumsmith, R.E., Meador-Woodruff, J.H.: Abnormal N-linked glycosylation of cortical AMPA receptor subunits in schizophrenia. Schizophr. Res. 146, 177–183 (2013). https://doi.org/10.1016/j.schres.2013.01.031

    Article  PubMed  PubMed Central  Google Scholar 

  170. Mueller, T.M., Remedies, C.E., Haroutunian, V., Meador-Woodruff, J.H.: Abnormal subcellular localization of GABA A receptor subunits in schizophrenia brain. Transl. Psychiatry. 5, e612 (2015). https://doi.org/10.1038/tp.2015.102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Ragland, J.D., Yoon, J., Minzenberg, M.J., Carter, C.S.: Neuroimaging of cognitive disability in schizophrenia: Search for a pathophysiological mechanism. Int. Rev. Psychiatry. 19, 417 (2007). https://doi.org/10.1080/09540260701486365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Sim, N.S., Seo, Y., Lim, J.S., Kim, W.K., Son, H., Kim, H.D., Kim, S., An, H.J., Kang, H.C., Kim, S.H., Kim, D.S., Lee, J.H.: Brain somatic mutations in SLC35A2 cause intractable epilepsy with aberrant N-glycosylation. Neurol. Genet. 4, e294 (2018). https://doi.org/10.1212/NXG.0000000000000294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Abou-Abbass, H., Bahmad, H., Abou-El-Hassan, H., Zhu, R., Zhou, S., Dong, X., Hamade, E., Mallah, K., Zebian, A., Ramadan, N., Mondello, S., Fares, J., Comair, Y., Atweh, S., Darwish, H., Zibara, K., Mechref, Y., Kobeissy, F.: Deciphering glycomics and neuroproteomic alterations in experimental traumatic brain injury: Comparative analysis of aspirin and clopidogrel treatment. Electrophoresis 37, 1562–1576 (2016). https://doi.org/10.1002/elps.201500583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Gudelj, I., Lauc, G., Pezer, M.: Immunoglobulin G glycosylation in aging and diseases. Cell. Immunol. 333, 65–79 (2018). https://doi.org/10.1016/j.cellimm.2018.07.009

    Article  CAS  PubMed  Google Scholar 

  175. Zhang, Y., Guo, Z., Zou, L., Yang, Y., Zhang, L., Ji, N., Shao, C., Sun, W., Wang, Y.: A comprehensive map and functional annotation of the normal human cerebrospinal fluid proteome. J. Proteomics. 119, 90–99 (2015). https://doi.org/10.1016/J.JPROT.2015.01.017

    Article  CAS  PubMed  Google Scholar 

  176. Begcevic, I., Brinc, D., Drabovich, A.P., Batruch, I., Diamandis, E.P.: Identification of brain-enriched proteins in the cerebrospinal fluid proteome by LC-MS/MS profiling and mining of the Human Protein Atlas. Clin. Proteomics. 13, (2016). https://doi.org/10.1186/S12014-016-9111-3

  177. Palmigiano, A., Barone, R., Sturiale, L., Sanfilippo, C., Bua, R.O., Romeo, D.A., Messina, A., Capuana, M.L., Maci, T., Le Pira, F., Zappia, M., Garozzo, D.: CSF N-glycoproteomics for early diagnosis in Alzheimer’s disease. J. Proteomics. 131, 29–37 (2016). https://doi.org/10.1016/J.JPROT.2015.10.006

    Article  CAS  PubMed  Google Scholar 

  178. Schedin-Weiss, S., Gaunitz, S., Sui, P., Chen, Q., Haslam, S.M., Blennow, K., Winblad, B., Dell, A., Tjernberg, L.O.: Glycan biomarkers for Alzheimer disease correlate with T-tau and P-tau in cerebrospinal fluid in subjective cognitive impairment. FEBS J. 287, 3221–3234 (2020). https://doi.org/10.1111/febs.15197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Gonçalves, M., Tillack, L., de Carvalho, M., Pinto, S., Conradt, H.S., Costa, J.: Phosphoneurofilament heavy chain and N-glycomics from the cerebrospinal fluid in amyotrophic lateral sclerosis. Clin. Chim. Acta. 438, 342–349 (2015). https://doi.org/10.1016/J.CCA.2014.09.011

    Article  PubMed  Google Scholar 

  180. Stanta, J.L., Saldova, R., Struwe, W.B., Byrne, J.C., Leweke, F.M., Rothermund, M., Rahmoune, H., Levin, Y., Guest, P.C., Bahn, S., Rudd, P.M.: Identification of N-glycosylation changes in the CSF and serum in patients with schizophrenia. J. Proteome Res. 9, 4476–4489 (2010). https://doi.org/10.1021/PR1002356

    Article  CAS  PubMed  Google Scholar 

  181. United Nations Department of Economic and Social Affairs Population Division: World Population Ageing 2013. (2013)

  182. Wolters, F.J., Arfan Ikram, M.: Epidemiology of Dementia: The Burden on Society, the Challenges for Research. Methods Mol. Biol. 1750, 3–14 (2018). https://doi.org/10.1007/978-1-4939-7704-8_1

    Article  CAS  PubMed  Google Scholar 

  183. Minoshima, F., Ozaki, H., Odaka, H., Tateno, H.: Integrated analysis of glycan and RNA in single cells. iScience. 24, (2021). https://doi.org/10.1016/j.isci.2021.102882

  184. Kearney, C.J., Vervoort, S.J., Ramsbottom, K.M., Todorovski, I., Lelliott, E.J., Zethoven, M., Pijpers, L., Martin, B.P., Semple, T., Martelotto, L., Trapani, J.A., Parish, I.A., Scott, N.E., Oliaro, J., Johnstone, R.W.: SUGAR-seq enables simultaneous detection of glycans, epitopes, and the transcriptome in single cells. Sci. Adv. 7, 1–13 (2021). https://doi.org/10.1126/sciadv.abe3610

    Article  CAS  Google Scholar 

  185. Mueller, T.M., Haroutunian, V., Meador-Woodruff, J.H.: N-Glycosylation of GABAA receptor subunits is altered in Schizophrenia. Neuropsychopharmacology 39, 528–537 (2014). https://doi.org/10.1038/npp.2013.190

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

GL is the founder and owner of Genos Ltd, a private research organization that specializes in high-throughput glycomic analysis and has several patents in this field. TK is an employee of Genos Ltd.

Author information

Authors and Affiliations

Authors

Contributions

TK conceived the idea for the article, performed the literature search, and wrote the manuscript. GL critically revised the work. All authors approved the final version to be published.

Corresponding author

Correspondence to Thomas S. Klarić.

Ethics declarations

Conflicts of interest

GL is the founder and owner of Genos Ltd, a private research organization that specializes in high-throughput glycomic analysis and has several patents in this field. TK is an employee of Genos Ltd.

Ethics approval

This review paper was prepared by literature search only - no experimental work was performed and thus no ethics approval was required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

GL is the founder and owner of Genos Ltd, a private research organization that specializes in highthroughput glycomic analysis and has several patents in this field. TK is an employee of Genos Ltd.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klarić, T.S., Lauc, G. The dynamic brain N-glycome. Glycoconj J 39, 443–471 (2022). https://doi.org/10.1007/s10719-022-10055-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-022-10055-x

Keywords

Navigation