Skip to main content
Log in

Nitric oxide-cyclic GMP role in Ang II induced hyperpolarization in bovine aortic endothelium cell line (BAE-1)

  • Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Angiotensin II (Ang II), a mitogen-activated peptide, exerts numerous effects on the cardiovascular system including the regulation of blood pressure. The current study focused on the potential mechanisms that seem to be involved in Ang II vasodilation using bovine aortic endothelial cells (BAE-1) cell lines. Expression of the Ang II receptor (AT2) in BAE-1 was checked by western blots in the presence of valsartan (AT1 inhibitor). To check if Ang II’s vasodilator impact was mediated by the nitric oxide (NO) pathway, the Griess reagent was used. Furthermore, cell-attached patch-clamp and fire-polished borosilicate electrodes with a resistance of 3–5 MΩ in the working solutions was used to record membrane currents from treated BAE-1. BEA-1 revealed 50 kDa immunoreactive bands that matched AT2. The concentration of AT2 was elevated in valsartan-treated cells in comparison to control cells. The biochemical experimental data indicated that the NO level increased in a concentration-dependent manner. Meanwhile, Ang II at a concentration of 1 µM, the level of NO increased more than at 100 µM. In patch-clamp experiments, K current and chord conductance were enhanced after incubation of Ang II with valsartan. When 100 µM Ang II was added, the current peaked rapidly and after 15 min of incubation, the maximum value was obtained, as opposed to 10 min and control (110.9 ± 13.3 pA control, 141.4 ± 30.4 pA after 10 min and 174.4 ± 49.3 pA after 15 min). Ang II type two receptor inhibitor (PD1231777) reduced the current and conductance induced by Ang II. The presented data revealed that Ang II released NO via the activation of AT2. K currents were stimulated by Ang II and evoked mainly a current consistent with the activation of K channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

Download references

Acknowledgements

We’d like to express our gratitude to the Consiglio Nazionale delle Ricerche-Istituto di Biofisica in Genova/ Italy for providing permission to work in their labs.

Funding

This research did not receive any grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

CMM designed, coordinated, analyzed the data, and wrote the manuscript draft. OAMA supervised the project and revised the manuscript.

Corresponding authors

Correspondence to Chinar M. Mohammed or Omar A. M. Al-Habib.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, C.M., Al-Habib, O.A. Nitric oxide-cyclic GMP role in Ang II induced hyperpolarization in bovine aortic endothelium cell line (BAE-1). Cytotechnology 76, 113–121 (2024). https://doi.org/10.1007/s10616-023-00602-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-023-00602-1

Keywords

Navigation