Skip to main content

Advertisement

Log in

Targeting a novel circITCH/miR-421/BTG1 axis is effective to suppress the malignant phenotypes in hepatocellular carcinoma (HCC) cells

  • Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Circular RNA-based competing endogenous RNA (ceRNA) networks contribute to the initiation and development of various types of cancer, including hepatocellular carcinoma (HCC). Although a novel circular RNA itchy E3 ubiquitin protein ligase (circITCH) is identified as a tumor suppressor in HCC, its detailed molecular mechanisms have not been fully delineated. The present study was designed to resolve this issue, and we firstly verified that circITCH suppressed the malignant phenotypes in HCC cells by regulating a novel miR-421/B-cell translocation gene 1 (BTG1) axis. Specifically, through performing the Real-Time qPCR analysis, we noticed that circITCH expression in HCC tumor tissues or cell lines were significantly lower than that in adjacent normal tissues or normal hepatocytes, and the expression levels of circITCH were negatively correlated with tumor size and TNM stage in HCC patients. Next, our functional experiments confirmed that overexpression of circITCH induced cell cycle arrest and apoptosis, and reduced cell viability and colony forming ability in Hep3B and Huh7 cells. Mechanically, bioinformatics analysis, RNA immunoprecipitation and luciferase reporter assay demonstrated that circITCH served as RNA sponges for miR-421 to elevate BTG1 levels in HCC cells. The rescuing experiments verified that upregulation of miR-421 promoted cell viability and colony formation, and reduced apoptosis, which were abrogated by overexpression of circITCH or BTG1. In conclusion, this study identified a novel circITCH/miR-421/BTG1 axis that restrained the development of HCC, and our findings provided novel biomarkers for the treatment of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data were all included in this manuscript. The original data are available from the corresponding author upon reasonable request.

References

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equal work in this research.

Corresponding author

Correspondence to Chang Liu.

Ethics declarations

Conflict of interest

The authors declared no conflict of interest in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Yin, X., Bao, H. et al. Targeting a novel circITCH/miR-421/BTG1 axis is effective to suppress the malignant phenotypes in hepatocellular carcinoma (HCC) cells. Cytotechnology 75, 255–267 (2023). https://doi.org/10.1007/s10616-023-00576-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-023-00576-0

Keywords

Navigation