Skip to main content

Advertisement

Log in

Associations amongst genes, molecules, cells, and organs in breast cancer metastasis

  • Review
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

This paper is a cross fertilization of ideas about the importance of molecular aspects of breast cancer metastasis by basic scientists, a pathologist, and clinical oncologists at the Henry Ford Health symposium. We address four major topics: (i) the complex roles of lymphatic endothelial cells and the molecules that stimulate them to enhance lymph node and systemic metastasis and influence the anti-tumor immunity that might inhibit metastasis; (ii) the interaction of molecules and cells when breast cancer spreads to bone, and how bone metastases may themselves spread to internal viscera; (iii) how molecular expression and morphologic subtypes of breast cancer assist clinicians in determining which patients to treat with more or less aggressive therapies; (iv) how the outcomes of patients with oligometastases in breast cancer are different from those with multiple metastases and how that could justify the aggressive treatment of these patients with the hope of cure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Giaquinto AN, Sung H, Miller KD, Kramer JL, Newman LA, Minihan A, Jemal A et al (2022) Breast cancer statistics, 2022. CA Cancer J Clin 72:524–541. https://doi.org/10.3322/caac.21754

    Article  PubMed  Google Scholar 

  2. Leonard-Murali S, Nathanson SD, Springer K, Baker P, Susick L (2023) Early breast cancer survival of black and white american women with equal diagnostic and therapeutic management. Eur J Surg Oncol 49:583–588. https://doi.org/10.1016/j.ejso.2022.11.101

    Article  PubMed  Google Scholar 

  3. Dieterich LC, Tacconi C, Ducoli L, Detmar M (2022) Lymphatic vessels in cancer. Physiol Rev 102:1837–1879. https://doi.org/10.1152/physrev.00039.2021

    Article  CAS  PubMed  Google Scholar 

  4. Stacker SA, Williams SP, Karnezis T, Shayan R, Fox SB, Achen MG (2014) Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat Rev Cancer 14:159–172. https://doi.org/10.1038/nrc3677

    Article  CAS  PubMed  Google Scholar 

  5. Dieterich LC, Detmar M (2016) Tumor lymphangiogenesis and new drug development. Adv Drug Deliv Rev 99:148–160. https://doi.org/10.1016/j.addr.2015.12.011

    Article  CAS  PubMed  Google Scholar 

  6. Chen JM, Luo B, Ma R, Luo XX, Chen YS, Li Y (2021) Lymphatic endothelial markers and tumor lymphangiogenesis assessment in human breast cancer. Diagnostics (Basel) 12:4. https://doi.org/10.3390/diagnostics12010004

    Article  CAS  PubMed  Google Scholar 

  7. Agarwal B, Saxena R, Morimiya A, Mehrotra S, Badve S (2005) Lymphangiogenesis does not occur in breast cancer. Am J Surg Pathol 29:1449–1455. https://doi.org/10.1097/01.pas.0000174269.99459.9d

    Article  PubMed  Google Scholar 

  8. van der Schaft DW, Pauwels P, Hulsmans S, Zimmermann M, van de Poll-Franse LV, Griffioen AW (2007) Absence of lymphangiogenesis in ductal breast cancer at the primary tumor site. Cancer Lett 254:128–136. https://doi.org/10.1016/j.canlet.2007.03.001

    Article  CAS  PubMed  Google Scholar 

  9. Williams CS, Leek RD, Robson AM, Banerji S, Prevo R, Harris AL, Jackson DG (2003) Absence of lymphangiogenesis and intratumoural lymph vessels in human metastatic breast cancer. J Pathol 200:195–206. https://doi.org/10.1002/path.1343

    Article  CAS  PubMed  Google Scholar 

  10. Van der Auwera I, Colpaert C, Van Marck E, Vermeulen P, Dirix L (2006) Lymphangiogenesis in breast cancer. Am J Surg Pathol 30:1055–1056 author reply 1056–1057. https://doi.org/10.1097/00000478-200608000-00021

    Article  PubMed  Google Scholar 

  11. Van der Auwera I, Van den Eynden GG, Colpaert CG, Van Laere SJ, van Dam P, Van Marck EA, Dirix LY et al (2005) Tumor lymphangiogenesis in inflammatory breast carcinoma: a histomorphometric study. Clin Cancer Res 11:7637–7642. https://doi.org/10.1158/1078-0432.CCR-05-1142

    Article  CAS  PubMed  Google Scholar 

  12. Van der Auwera I, Van Laere SJ, Van den Eynden GG, Benoy I, van Dam P, Colpaert CG, Fox SB et al (2004) Increased angiogenesis and lymphangiogenesis in inflammatory versus noninflammatory breast cancer by real-time reverse transcriptase-PCR gene expression quantification. Clin Cancer Res 10:7965–7971. https://doi.org/10.1158/1078-0432.CCR-04-0063

    Article  PubMed  Google Scholar 

  13. Lyons TR, Borges VF, Betts CB, Guo Q, Kapoor P, Martinson HA, Jindal S et al (2014) Cyclooxygenase-2-dependent lymphangiogenesis promotes nodal metastasis of postpartum breast cancer. J Clin Invest 124:3901–3912. https://doi.org/10.1172/JCI73777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Niemiec J, Adamczyk A, Ambicka A, Mucha-Malecka A, Wysocki W, Mitus J, Rys J (2012) Lymphangiogenesis assessed using three methods is related to tumour grade, breast cancer subtype and expression of basal marker. Pol J Pathol 63:165–171. https://doi.org/10.5114/pjp.2012.31500

    Article  PubMed  Google Scholar 

  15. Niemiec JA, Adamczyk A, Ambicka A, Mucha-Malecka A, W MW, Rys J (2014) Triple-negative, basal marker-expressing, and high-grade breast carcinomas are characterized by high lymphatic vessel density and the expression of podoplanin in stromal fibroblasts. Appl Immunohistochem Mol Morphol 22:10–16. https://doi.org/10.1097/PAI.0b013e318286030d

    Article  CAS  PubMed  Google Scholar 

  16. Ma Q, Dieterich LC, Ikenberg K, Bachmann SB, Mangana J, Proulx ST, Amann VC et al (2018) Unexpected contribution of lymphatic vessels to promotion of distant metastatic tumor spread. Sci Adv 4:eaat4758. https://doi.org/10.1126/sciadv.aat4758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Van den Eynden GG, Van der Auwera I, Van Laere SJ, Huygelen V, Colpaert CG, van Dam P, Dirix LY et al (2006) Induction of lymphangiogenesis in and around axillary lymph node metastases of patients with breast cancer. Br J Cancer 95:1362–1366. https://doi.org/10.1038/sj.bjc.6603443

    Article  PubMed  PubMed Central  Google Scholar 

  18. Westhoff CC, Muller SK, Jank P, Kalder M, Moll R (2023) Nodal lymphangiogenesis and immunophenotypic variations of sinus endothelium in sentinel and non-sentinel lymph nodes of invasive breast carcinoma. PLoS ONE 18:e0280936. https://doi.org/10.1371/journal.pone.0280936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Commerford CD, Dieterich LC, He Y, Hell T, Montoya-Zegarra JA, Noerrelykke SF, Russo E et al (2018) Mechanisms of tumor-induced lymphovascular niche formation in draining lymph nodes. Cell Rep 25:3554–3563e3554. https://doi.org/10.1016/j.celrep.2018.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hirakawa S, Brown LF, Kodama S, Paavonen K, Alitalo K, Detmar M (2007) VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood 109:1010–1017. https://doi.org/10.1182/blood-2006-05-021758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee E, Fertig EJ, Jin K, Sukumar S, Pandey NB, Popel AS (2014) Breast cancer cells condition lymphatic endothelial cells within pre-metastatic niches to promote metastasis. Nat Commun 5:4715. https://doi.org/10.1038/ncomms5715

    Article  CAS  PubMed  Google Scholar 

  22. Olmeda D, Cerezo-Wallis D, Riveiro-Falkenbach E, Pennacchi PC, Contreras-Alcalde M, Ibarz N, Cifdaloz M et al (2017) Whole-body imaging of lymphovascular niches identifies pre-metastatic roles of midkine. Nature 546:676–680. https://doi.org/10.1038/nature22977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Garcia-Silva S, Benito-Martin A, Nogues L, Hernandez-Barranco A, Mazariegos MS, Santos V, Hergueta-Redondo M et al (2021) Melanoma-derived small extracellular vesicles induce lymphangiogenesis and metastasis through an NGFR-dependent mechanism. Nat Cancer 2:1387–1405. https://doi.org/10.1038/s43018-021-00272-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hirakawa S, Kodama S, Kunstfeld R, Kajiya K, Brown LF, Detmar M (2005) VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med 201:1089–1099. https://doi.org/10.1084/jem.20041896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Leary N, Walser S, He Y, Cousin N, Pereira P, Gallo A, Collado-Diaz V et al (2022) Melanoma-derived extracellular vesicles mediate lymphatic remodelling and impair tumour immunity in draining lymph nodes. J Extracell Vesicles 11:e12197. https://doi.org/10.1002/jev2.12197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nathanson SD, Kwon D, Kapke A, Alford SH, Chitale D (2009) The role of lymph node metastasis in the systemic dissemination of breast cancer. Ann Surg Oncol 16:3396–3405. https://doi.org/10.1245/s10434-009-0659-2

    Article  PubMed  Google Scholar 

  27. Nathanson S D, Leonard-Murali S, Burmeister C, Susick L, Baker P (2020) Clinicopathological evaluation of the potential anatomic pathways of systemic metastasis from primary breast cancer suggests an orderly spread through the regional lymph nodes. Ann Surg Oncol 27:4810–4818. https://doi.org/10.1245/s10434-020-08904-w

    Article  Google Scholar 

  28. Zhang S, Zhang D, Gong M, Wen L, Liao C, Zou L (2017) High lymphatic vessel density and presence of lymphovascular invasion both predict poor prognosis in breast cancer. BMC Cancer 17:335. https://doi.org/10.1186/s12885-017-3338-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen Y, Yan J, Yuan Z, Yu S, Yang C, Wang Z, Zheng Q (2013) A meta-analysis of the relationship between lymphatic microvessel density and clinicopathological parameters in breast cancer. Bull Cancer 100:1–10. https://doi.org/10.1684/bdc.2013.1719

    Article  PubMed  Google Scholar 

  30. Wang J, Guo Y, Wang B, Bi J, Li K, Liang X, Chu H et al (2012) Lymphatic microvessel density and vascular endothelial growth factor-C and -D as prognostic factors in breast cancer: a systematic review and meta-analysis of the literature. Mol Biol Rep 39:11153–11165. https://doi.org/10.1007/s11033-012-2024-y

    Article  CAS  PubMed  Google Scholar 

  31. Liang B, Li Y (2014) Prognostic significance of VEGF-C expression in patients with breast cancer: a meta-analysis. Iran J Public Health 43:128–135

    PubMed  PubMed Central  Google Scholar 

  32. Zhang Z, Luo G, Tang H, Cheng C, Wang P (2016) Prognostic significance of high VEGF-C expression for patients with breast cancer: an update meta analysis. PLoS ONE 11:e0165725. https://doi.org/10.1371/journal.pone.0165725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang F, Li S, Zhao Y, Yang K, Chen M, Niu H, Yang J et al (2016) Predictive role of the overexpression for CXCR4, C-Met, and VEGF-C among breast cancer patients: a meta-analysis. Breast 28:45–53. https://doi.org/10.1016/j.breast.2016.04.016

    Article  PubMed  Google Scholar 

  34. Gao S, Ma JJ, Lu C (2014) Prognostic significance of VEGF-C immunohistochemical expression in breast cancer: a meta-analysis. Tumour Biol 35:1523–1529. https://doi.org/10.1007/s13277-013-1211-3

    Article  CAS  PubMed  Google Scholar 

  35. Fujimoto N, Dieterich LC (2021) Mechanisms and clinical significance of tumor lymphatic invasion. Cells 10:2585. https://doi.org/10.3390/cells10102585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mohammed SI, Torres-Luquis O, Walls E, Lloyd F (2019) Lymph-circulating tumor cells show distinct properties to blood-circulating tumor cells and are efficient metastatic precursors. Mol Oncol 13:1400–1418. https://doi.org/10.1002/1878-0261.12494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mandriota SJ, Jussila L, Jeltsch M, Compagni A, Baetens D, Prevo R, Banerji S et al (2001) Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J 20:672–682. https://doi.org/10.1093/emboj/20.4.672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P, Riccardi L et al (2001) Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 7:192–198. https://doi.org/10.1038/84643

    Article  CAS  PubMed  Google Scholar 

  39. Kerjaschki D, Bago-Horvath Z, Rudas M, Sexl V, Schneckenleithner C, Wolbank S, Bartel G et al (2011) Lipoxygenase mediates invasion of intrametastatic lymphatic vessels and propagates lymph node metastasis of human mammary carcinoma xenografts in mouse. J Clin Invest 121:2000–2012. https://doi.org/10.1172/JCI44751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Teichgraeber DC, Guirguis MS, Whitman GJ (2021) Breast cancer staging: updates in the AJCC Cancer Staging Manual, 8th Edition, and current challenges for radiologists, from the AJR Special Series on Cancer Staging. AJR Am J Roentgenol 217:278–290. https://doi.org/10.2214/ajr.20.25223

    Article  PubMed  Google Scholar 

  41. Stacker SA, Caesar C, Baldwin ME, Thornton GE, Williams RA, Prevo R, Jackson DG et al (2001) VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 7:186–191. https://doi.org/10.1038/84635

    Article  CAS  PubMed  Google Scholar 

  42. Gundem G, Van Loo P, Kremeyer B, Alexandrov LB, Tubio JMC, Papaemmanuil E, Brewer DS et al (2015) The evolutionary history of lethal metastatic prostate cancer. Nature 520:353–357. https://doi.org/10.1038/nature14347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pereira ER, Kedrin D, Seano G, Gautier O, Meijer EFJ, Jones D, Chin SM et al (2018) Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice. Science 359:1403–1407. https://doi.org/10.1126/science.aal3622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nathanson SD, Detmar M, Padera TP, Yates LR, Welch DR, Beadnell TC, Scheid AD et al (2022) Mechanisms of breast cancer metastasis. Clin Exp Metastasis 39:117–137. https://doi.org/10.1007/s10585-021-10090-2

    Article  PubMed  Google Scholar 

  45. Brown M, Assen FP, Leithner A, Abe J, Schachner H, Asfour G, Bago-Horvath Z et al (2018) Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice. Science 359:1408–1411. https://doi.org/10.1126/science.aal3662

    Article  CAS  PubMed  Google Scholar 

  46. Hong MK, Macintyre G, Wedge DC, Van Loo P, Patel K, Lunke S, Alexandrov LB et al (2015) Tracking the origins and drivers of subclonal metastatic expansion in prostate cancer. Nat Commun 6:6605. https://doi.org/10.1038/ncomms7605

    Article  CAS  PubMed  Google Scholar 

  47. Naxerova K, Reiter JG, Brachtel E, Lennerz JK, van de Wetering M, Rowan A, Cai T et al (2017) Origins of lymphatic and distant metastases in human colorectal cancer. Science 357:55–60. https://doi.org/10.1126/science.aai8515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang C, Zhang L, Xu T, Xue R, Yu L, Zhu Y, Wu Y et al (2020) Mapping the spreading routes of lymphatic metastases in human colorectal cancer. Nat Commun 11:1993. https://doi.org/10.1038/s41467-020-15886-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pretti MAM, Bernardes SS, da Cruz JGV, Boroni M, Possik PA (2020) Extracellular vesicle-mediated crosstalk between melanoma and the immune system: impact on tumor progression and therapy response. J Leukoc Biol 108:1101–1115. https://doi.org/10.1002/jlb.3mr0320-644r

    Article  CAS  PubMed  Google Scholar 

  50. Hood JL, San RS, Wickline SA (2011) Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res 71:3792–3801. https://doi.org/10.1158/0008-5472.CAN-10-4455

    Article  CAS  PubMed  Google Scholar 

  51. Srinivasan S, Vannberg FO, Dixon JB (2016) Lymphatic transport of exosomes as a rapid route of information dissemination to the lymph node. Sci Rep 6:24436. https://doi.org/10.1038/srep24436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pucci F, Garris C, Lai CP, Newton A, Pfirschke C, Engblom C, Alvarez D et al (2016) SCS macrophages suppress melanoma by restricting tumor-derived vesicle-B cell interactions. Science 352:242–246. https://doi.org/10.1126/science.aaf1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sun B, Zhou Y, Fang Y, Li Z, Gu X, Xiang J (2019) Colorectal cancer exosomes induce lymphatic network remodeling in lymph nodes. Int J Cancer 145:1648–1659. https://doi.org/10.1002/ijc.32196

    Article  CAS  PubMed  Google Scholar 

  54. Cortes J, Cescon DW, Rugo HS, Nowecki Z, Im SA, Yusof MM, Gallardo C et al (2020) Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet 396:1817–1828. https://doi.org/10.1016/S0140-6736(20)32531-9

    Article  PubMed  Google Scholar 

  55. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, Carter SL et al (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499:214–218. https://doi.org/10.1038/nature12213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Miller LD, Chou JA, Black MA, Print C, Chifman J, Alistar A, Putti T et al (2016) Immunogenic subtypes of breast cancer delineated by gene classifiers of immune responsiveness. Cancer Immunol Res 4:600–610. https://doi.org/10.1158/2326-6066.CIR-15-0149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Denkert C, von Minckwitz G, Darb-Esfahani S, Lederer B, Heppner BI, Weber KE, Budczies J et al (2018) Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol 19:40–50. https://doi.org/10.1016/S1470-2045(17)30904-X

    Article  PubMed  Google Scholar 

  58. Bassez A, Vos H, Van Dyck L, Floris G, Arijs I, Desmedt C, Boeckx B et al (2021) A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer. Nat Med 27:820–832. https://doi.org/10.1038/s41591-021-01323-8

    Article  CAS  PubMed  Google Scholar 

  59. Dammeijer F, van Gulijk M, Mulder EE, Lukkes M, Klaase L, van den Bosch T, van Nimwegen M et al (2020) The PD-1/PD-L1-checkpoint restrains T cell immunity in tumor-draining lymph nodes. Cancer Cell 38:685–700e688. https://doi.org/10.1016/j.ccell.2020.09.001

    Article  CAS  PubMed  Google Scholar 

  60. Huang Q, Wu X, Wang Z, Chen X, Wang L, Lu Y, Xiong D et al (2022) The primordial differentiation of tumor-specific memory CD8(+) T cells as bona fide responders to PD-1/PD-L1 blockade in draining lymph nodes. Cell 185:4049–4066e4025. https://doi.org/10.1016/j.cell.2022.09.020

    Article  CAS  PubMed  Google Scholar 

  61. O’Melia MJ, Manspeaker MP, Thomas SN (2021) Tumor-draining lymph nodes are survival niches that support T cell priming against lymphatic transported tumor antigen and effects of immune checkpoint blockade in TNBC. Cancer Immunol Immunother 70:2179–2195. https://doi.org/10.1007/s00262-020-02792-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Prokhnevska N, Cardenas MA, Valanparambil RM, Sobierajska E, Barwick BG, Jansen C, Reyes Moon A et al (2023) CD8(+) T cell activation in cancer comprises an initial activation phase in lymph nodes followed by effector differentiation within the tumor. Immunity 56:107–124e105. https://doi.org/10.1016/j.immuni.2022.12.002

    Article  CAS  PubMed  Google Scholar 

  63. Francis DM, Manspeaker MP, Schudel A, Sestito LF, O’Melia MJ, Kissick HT, Pollack BP et al (2020) Blockade of immune checkpoints in lymph nodes through locoregional delivery augments cancer immunotherapy. Sci Transl Med 12:eaay3575. https://doi.org/10.1126/scitranslmed.aay3575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jalkanen S, Salmi M (2020) Lymphatic endothelial cells of the lymph node. Nat Rev Immunol 20:566–578. https://doi.org/10.1038/s41577-020-0281-x

    Article  CAS  PubMed  Google Scholar 

  65. Cohen JN, Guidi CJ, Tewalt EF, Qiao H, Rouhani SJ, Ruddell A, Farr AG et al (2010) Lymph node-resident lymphatic endothelial cells mediate peripheral tolerance via Aire-independent direct antigen presentation. J Exp Med 207:681–688. https://doi.org/10.1084/jem.20092465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hirosue S, Vokali E, Raghavan VR, Rincon-Restrepo M, Lund AW, Corthesy-Henrioud P, Capotosti F et al (2014) Steady-state antigen scavenging, cross-presentation, and CD8 + T cell priming: a new role for lymphatic endothelial cells. J Immunol 192:5002–5011. https://doi.org/10.4049/jimmunol.1302492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lund AW, Duraes FV, Hirosue S, Raghavan VR, Nembrini C, Thomas SN, Issa A et al (2012) VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Cell Rep 1:191–199. https://doi.org/10.1016/j.celrep.2012.01.005

    Article  CAS  PubMed  Google Scholar 

  68. Cohen JN, Tewalt EF, Rouhani SJ, Buonomo EL, Bruce AN, Xu X, Bekiranov S et al (2014) Tolerogenic properties of lymphatic endothelial cells are controlled by the lymph node microenvironment. PLoS ONE 9:e87740. https://doi.org/10.1371/journal.pone.0087740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fujimoto N, He Y, D’Addio M, Tacconi C, Detmar M, Dieterich LC (2020) Single-cell mapping reveals new markers and functions of lymphatic endothelial cells in lymph nodes. PLoS Biol 18:e3000704. https://doi.org/10.1371/journal.pbio.3000704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tewalt EF, Cohen JN, Rouhani SJ, Guidi CJ, Qiao H, Fahl SP, Conaway MR et al (2012) Lymphatic endothelial cells induce tolerance via PD-L1 and lack of costimulation leading to high-level PD-1 expression on CD8 T cells. Blood 120:4772–4782. https://doi.org/10.1182/blood-2012-04-427013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dieterich LC, Ikenberg K, Cetintas T, Kapaklikaya K, Hutmacher C, Detmar M (2017) Tumor-associated lymphatic vessels upregulate PDL1 to inhibit T-cell activation. Front Immunol 8:66. https://doi.org/10.3389/fimmu.2017.00066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sibler E, He Y, Ducoli L, Rihs V, Sidler P, Puig-Moreno C, Frey J et al (2022) Immunomodulatory responses of subcapsular sinus floor lymphatic endothelial cells in tumor-draining lymph nodes. Cancers (Basel) 14:3602. https://doi.org/10.3390/cancers14153602

    Article  CAS  PubMed  Google Scholar 

  73. Takeda A, Hollmen M, Dermadi D, Pan J, Brulois KF, Kaukonen R, Lonnberg T et al (2019) Single-cell survey of human lymphatics unveils marked endothelial cell heterogeneity and mechanisms of homing for neutrophils. Immunity 51:561–572e565. https://doi.org/10.1016/j.immuni.2019.06.027

    Article  CAS  PubMed  Google Scholar 

  74. Cousin N, Cap S, Dihr M, Tacconi C, Detmar M, Dieterich LC (2021) Lymphatic PD-L1 expression restricts tumor-specific CD8 + T cell responses. Cancer Res 81:4133–4144. https://doi.org/10.1158/0008-5472.CAN-21-0633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lane RS, Femel J, Breazeale AP, Loo CP, Thibault G, Kaempf A, Mori M et al (2018) IFNgamma-activated dermal lymphatic vessels inhibit cytotoxic T cells in melanoma and inflamed skin. J Exp Med 215:3057–3074. https://doi.org/10.1084/jem.20180654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gkountidi AO, Garnier L, Dubrot J, Angelillo J, Harle G, Brighouse D, Wrobel LJ et al (2021) MHC class II antigen presentation by lymphatic endothelial cells in tumors promotes intratumoral regulatory T cell-suppressive functions. Cancer Immunol Res 9:748–764. https://doi.org/10.1158/2326-6066.CIR-20-0784

    Article  CAS  PubMed  Google Scholar 

  77. Roodman GD (2004) Mechanisms of bone metastasis. N Engl J Med 350:1655–1664. https://doi.org/10.1056/NEJMra030831

    Article  CAS  PubMed  Google Scholar 

  78. Ell B, Kang Y (2012) SnapShot: bone metastasis. Cell 151:690–690e691. https://doi.org/10.1016/j.cell.2012.10.005

    Article  CAS  PubMed  Google Scholar 

  79. Yoneda T, Sasaki A, Dunstan C, Williams PJ, Bauss F, De Clerck YA, Mundy GR (1997) Inhibition of osteolytic bone metastasis of breast cancer by combined treatment with the bisphosphonate ibandronate and tissue inhibitor of the matrix metalloproteinase-2. J Clin Invest 99:2509–2517. https://doi.org/10.1172/JCI119435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Suzman DL, Boikos SA, Carducci MA (2014) Bone-targeting agents in prostate cancer. Cancer Metastasis Rev 33:619–628. https://doi.org/10.1007/s10555-013-9480-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Satcher RL, Zhang XH (2022) Evolving cancer-niche interactions and therapeutic targets during bone metastasis. Nat Rev Cancer 22:85–101. https://doi.org/10.1038/s41568-021-00406-5

    Article  CAS  PubMed  Google Scholar 

  82. Campbell JP, Merkel AR, Masood-Campbell SK, Elefteriou F, Sterling JA (2012) Models of bone metastasis. J Vis Exp:e4260. https://doi.org/10.3791/4260

    Article  Google Scholar 

  83. Corey E, Quinn JE, Bladou F, Brown LG, Roudier MP, Brown JM, Buhler KR et al (2002) Establishment and characterization of osseous prostate cancer models: intra-tibial injection of human prostate cancer cells. Prostate 52:20–33. https://doi.org/10.1002/pros.10091

    Article  PubMed  Google Scholar 

  84. Yu C, Wang H, Muscarella A, Goldstein A, Zeng HC, Bae Y, Lee BH et al (2016) Intra-iliac artery injection for efficient and selective modeling of microscopic bone metastasis. J Vis Exp e53982. https://doi.org/10.3791/53982

  85. Wang H, Tian L, Goldstein A, Liu J, Lo HC, Sheng K, Welte T et al (2017) Bone-in-culture array as a platform to model early-stage bone metastases and discover anti-metastasis therapies. Nat Commun 8:15045. https://doi.org/10.1038/ncomms15045

    Article  PubMed  PubMed Central  Google Scholar 

  86. Wu YH, Gugala Z, Barry MM, Shen Y, Dasgupta S, Wang H (2022) Optimization and characterization of a bone culture model to study prostate cancer bone metastasis. Mol Cancer Ther 21:1360–1368. https://doi.org/10.1158/1535-7163.MCT-21-0684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hosseini H, Obradovic MMS, Hoffmann M, Harper KL, Sosa MS, Werner-Klein M, Nanduri LK et al (2016) Early dissemination seeds metastasis in breast cancer. Nature 540:552–558. https://doi.org/10.1038/nature20785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Balic M, Lin H, Young L, Hawes D, Giuliano A, McNamara G, Datar RH et al (2006) Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res 12:5615–5621. https://doi.org/10.1158/1078-0432.CCR-06-0169

    Article  CAS  PubMed  Google Scholar 

  89. Ghajar CM, Peinado H, Mori H, Matei IR, Evason KJ, Brazier H, Almeida D et al (2013) The PMN regulates breast tumour dormancy. Nat Cell Biol 15:807–817. https://doi.org/10.1038/ncb2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ghajar CM (2015) Metastasis prevention by targeting the dormant niche. Nat Rev Cancer 15:238–247. https://doi.org/10.1038/nrc3910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhang W, Xu Z, Hao X, He T, Li J, Shen Y, Liu K et al (2023) Bone metastasis initiation is coupled with bone remodeling through osteogenic differentiation of NG2 + cells. Cancer Discov 13:474–495. https://doi.org/10.1158/2159-8290.CD-22-0220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sivaraj KK, Adams RH (2016) Blood vessel formation and function in bone. Development 143:2706–2715. https://doi.org/10.1242/dev.136861

    Article  CAS  PubMed  Google Scholar 

  93. Price TT, Burness ML, Sivan A, Warner MJ, Cheng R, Lee CH, Olivere L et al (2016) Dormant breast cancer micrometastases reside in specific bone marrow niches that regulate their transit to and from bone. Sci Transl Med 8:340ra373. https://doi.org/10.1126/scitranslmed.aad4059

    Article  Google Scholar 

  94. Muscarella AM, Dai W, Mitchell PG, Zhang W, Wang H, Jia L, Stossi F et al (2020) Unique cellular protrusions mediate breast cancer cell migration by tethering to osteogenic cells. NPJ Breast Cancer 6:42. https://doi.org/10.1038/s41523-020-00183-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang H, Yu C, Gao X, Welte T, Muscarella AM, Tian L, Zhao H et al (2015) The osteogenic niche promotes early-stage bone colonization of disseminated breast cancer cells. Cancer Cell 27:193–210. https://doi.org/10.1016/j.ccell.2014.11.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang H, Tian L, Liu J, Goldstein A, Bado I, Zhang W, Arenkiel BR et al (2018) The osteogenic niche is a calcium reservoir of bone micrometastases and confers unexpected therapeutic vulnerability. Cancer Cell 34:823–839e827. https://doi.org/10.1016/j.ccell.2018.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bado IL, Zhang W, Hu J, Xu Z, Wang H, Sarkar P, Li L et al (2021) The bone microenvironment increases phenotypic plasticity of ER(+) breast cancer cells. Dev Cell 56:1100–1117e1109. https://doi.org/10.1016/j.devcel.2021.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang W, Bado IL, Hu J, Wan YW, Wu L, Wang H, Gao Y et al (2021) The bone microenvironment invigorates metastatic seeds for further dissemination. Cell 184:2471–2486e2420. https://doi.org/10.1016/j.cell.2021.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Coleman RE (2006) Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 12:6243s–6249. https://doi.org/10.1158/1078-0432.CCR-06-0931. s

    Article  PubMed  Google Scholar 

  100. Tian Z, Wu L, Yu C, Chen Y, Xu Z, Bado I, Loredo A et al (2021) Harnessing the power of antibodies to fight bone metastasis. Sci Adv 7:eabf2051. https://doi.org/10.1126/sciadv.abf2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yuan X, Qian N, Ling S, Li Y, Sun W, Li J, Du R et al (2021) Breast cancer exosomes contribute to pre-metastatic niche formation and promote bone metastasis of tumor cells. Theranostics 11:1429–1445. https://doi.org/10.7150/thno.45351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chen Z, Orlowski RZ, Wang M, Kwak L, McCarty N (2014) Osteoblastic niche supports the growth of quiescent multiple myeloma cells. Blood 123:2204–2208. https://doi.org/10.1182/blood-2013-07-517136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang XH, Giuliano M, Trivedi MV, Schiff R, Osborne CK (2013) Metastasis dormancy in estrogen receptor-positive breast cancer. Clin Cancer Res 19:6389–6397. https://doi.org/10.1158/1078-0432.CCR-13-0838

    Article  CAS  PubMed  Google Scholar 

  104. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70. https://doi.org/10.1016/s0092-8674(00)81683-9

    Article  CAS  PubMed  Google Scholar 

  105. Rakha EA, Tse GM, Quinn CM (2023) An update on the pathological classification of breast cancer. Histopathology 82:5–16. https://doi.org/10.1111/his.14786

    Article  PubMed  Google Scholar 

  106. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  107. Hanahan D (2022) Hallmarks of cancer: new dimensions. Cancer Discov 12:31–46. https://doi.org/10.1158/2159-8290.CD-21-1059

    Article  CAS  PubMed  Google Scholar 

  108. Bonotto M, Gerratana L, Poletto E, Driol P, Giangreco M, Russo S, Minisini AM et al (2014) Measures of outcome in metastatic breast cancer: insights from a real-world scenario. Oncologist 19:608–615. https://doi.org/10.1634/theoncologist.2014-0002

    Article  PubMed  PubMed Central  Google Scholar 

  109. Rakha EA, El-Sayed ME, Lee AH, Elston CW, Grainge MJ, Hodi Z, Blamey RW et al (2008) Prognostic significance of Nottingham histologic grade in invasive breast carcinoma. J Clin Oncol 26:3153–3158. https://doi.org/10.1200/JCO.2007.15.5986

    Article  PubMed  Google Scholar 

  110. Cserni G, Quinn CM, Foschini MP, Bianchi S, Callagy G, Chmielik E, Decker T et al (2021) Triple-negative breast cancer histological subtypes with a favourable prognosis. Cancers (Basel) 13:5694. https://doi.org/10.3390/cancers13225694

    Article  CAS  PubMed  Google Scholar 

  111. WHO Classification of Tumours Editorial Board (2019) WHO classification of tumours: breast tumours, 5th edn. World Health Organization, Lyon, France

    Google Scholar 

  112. Rakha EA, Ellis IO (2010) Lobular breast carcinoma and its variants. Semin Diagn Pathol 27:49–61. https://doi.org/10.1053/j.semdp.2009.12.009

    Article  PubMed  Google Scholar 

  113. Giuliano AE, Edge SB, Hortobagyi GN (2018) Eighth Edition of the AJCC Cancer staging Manual: breast Cancer. Ann Surg Oncol 25:1783–1785. https://doi.org/10.1245/s10434-018-6486-6

    Article  PubMed  Google Scholar 

  114. Jang N, Choi JE, Kang SH, Bae YK (2019) Validation of the pathological prognostic staging system proposed in the revised eighth edition of the AJCC staging manual in different molecular subtypes of breast cancer. Virchows Arch 474:193–200. https://doi.org/10.1007/s00428-018-2495-x

    Article  CAS  PubMed  Google Scholar 

  115. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752. https://doi.org/10.1038/35021093

    Article  CAS  PubMed  Google Scholar 

  116. Masood S (2016) Breast cancer subtypes: morphologic and biologic characterization. Womens Health (Lond) 12:103–119. https://doi.org/10.2217/whe.15.99

    Article  CAS  PubMed  Google Scholar 

  117. Kumar V, Abbas AK, Aster JC (2022) Robbins & Cotran pathologic basis of disease, 10th edn. Elsevier, Philadelphia, PA

    Google Scholar 

  118. Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87:159–170. https://doi.org/10.1016/s0092-8674(00)81333-1

    Article  CAS  PubMed  Google Scholar 

  119. Talmadge JE, Fidler IJ (2010) AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res 70:5649–5669. https://doi.org/10.1158/0008-5472.CAN-10-1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Akhtar M, Haider A, Rashid S, Al-Nabet A (2019) Paget’s seed and soil theory of cancer metastasis: an idea whose time has come. Adv Anat Pathol 26:69–74. https://doi.org/10.1097/PAP.0000000000000219

    Article  CAS  PubMed  Google Scholar 

  121. Langley RR, Fidler IJ (2007) Tumor cell-organ microenvironment interactions in the pathogenesis of cancer metastasis. Endocr Rev 28:297–321. https://doi.org/10.1210/er.2006-0027

    Article  CAS  PubMed  Google Scholar 

  122. Riggi N, Aguet M, Stamenkovic I (2018) Cancer metastasis: a reappraisal of its underlying mechanisms and their relevance to treatment. Annu Rev Pathol 13:117–140. https://doi.org/10.1146/annurev-pathol-020117-044127

    Article  CAS  PubMed  Google Scholar 

  123. Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9:265–273. https://doi.org/10.1038/nrc2620

    Article  CAS  PubMed  Google Scholar 

  124. Javid SH, Smith BL, Mayer E, Bellon J, Murphy CD, Lipsitz S, Golshan M (2009) Tubular carcinoma of the breast: results of a large contemporary series. Am J Surg 197:674–677. https://doi.org/10.1016/j.amjsurg.2008.05.005

    Article  PubMed  Google Scholar 

  125. Malmgren J, Hurlbert M, Atwood M, Kaplan HG (2019) Examination of a paradox: recurrent metastatic breast cancer incidence decline without improved distant disease survival: 1990–2011. Breast Cancer Res Treat 174:505–514. https://doi.org/10.1007/s10549-018-05090-y

    Article  PubMed  Google Scholar 

  126. Brown D, Smeets D, Szekely B, Larsimont D, Szasz AM, Adnet PY, Rothe F et al (2017) Phylogenetic analysis of metastatic progression in breast cancer using somatic mutations and copy number aberrations. Nat Commun 8:14944. https://doi.org/10.1038/ncomms14944

    Article  PubMed  PubMed Central  Google Scholar 

  127. Fimereli D, Venet D, Rediti M, Boeckx B, Maetens M, Majjaj S, Rouas G et al (2022) Timing evolution of lobular breast cancer through phylogenetic analysis. EBioMedicine 82:104169. https://doi.org/10.1016/j.ebiom.2022.104169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Garcia-Recio S, Hinoue T, Wheeler GL, Kelly BJ, Garrido-Castro AC, Pascual T, De Cubas AA et al (2023) Multiomics in primary and metastatic breast tumors from the AURORA US network finds microenvironment and epigenetic drivers of metastasis. Nat Cancer 4:128–147. https://doi.org/10.1038/s43018-022-00491-x

    Article  CAS  PubMed  Google Scholar 

  129. Siegel MB, He X, Hoadley KA, Hoyle A, Pearce JB, Garrett AL, Kumar S et al (2018) Integrated RNA and DNA sequencing reveals early drivers of metastatic breast cancer. J Clin Invest 128:1371–1383. https://doi.org/10.1172/JCI96153

    Article  PubMed  PubMed Central  Google Scholar 

  130. Yates LR, Knappskog S, Wedge D, Farmery JHR, Gonzalez S, Martincorena I, Alexandrov LB et al (2017) Genomic evolution of breast cancer metastasis and relapse. Cancer Cell 32:169–184e167. https://doi.org/10.1016/j.ccell.2017.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ng CKY, Bidard FC, Piscuoglio S, Geyer FC, Lim RS, de Bruijn I, Shen R et al (2017) Genetic heterogeneity in therapy-naive synchronous primary breast cancers and their metastases. Clin Cancer Res 23:4402–4415. https://doi.org/10.1158/1078-0432.CCR-16-3115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ullah I, Karthik GM, Alkodsi A, Kjallquist U, Stalhammar G, Lovrot J, Martinez NF et al (2018) Evolutionary history of metastatic breast cancer reveals minimal seeding from axillary lymph nodes. J Clin Invest 128:1355–1370. https://doi.org/10.1172/JCI96149

    Article  PubMed  PubMed Central  Google Scholar 

  133. Brastianos PK, Carter SL, Santagata S, Cahill DP, Taylor-Weiner A, Jones RT, Van Allen EM et al (2015) Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discov 5:1164–1177. https://doi.org/10.1158/2159-8290.CD-15-0369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Cejalvo JM, Martinez de Duenas E, Galvan P, Garcia-Recio S, Burgues Gasion O, Pare L, Antolin S et al (2017) Intrinsic subtypes and gene expression profiles in primary and metastatic breast cancer. Cancer Res 77:2213–2221. https://doi.org/10.1158/0008-5472.CAN-16-2717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Aftimos P, Oliveira M, Irrthum A, Fumagalli D, Sotiriou C, Gal-Yam EN, Robson ME et al (2021) Genomic and transcriptomic analyses of breast cancer primaries and matched metastases in AURORA, the breast International Group (BIG) molecular screening initiative. Cancer Discov 11:2796–2811. https://doi.org/10.1158/2159-8290.CD-20-1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Birkbak NJ, McGranahan N (2020) Cancer genome evolutionary trajectories in metastasis. Cancer Cell 37:8–19. https://doi.org/10.1016/j.ccell.2019.12.004

    Article  CAS  PubMed  Google Scholar 

  137. Samiei S, Simons JM, Engelen SME, Beets-Tan RGH, Classe JM, Smidt ML, Group E (2021) Axillary pathologic complete response after neoadjuvant systemic therapy by breast cancer subtype in patients with initially clinically node-positive disease: a systematic review and meta-analysis. JAMA Surg 156:e210891. https://doi.org/10.1001/jamasurg.2021.0891

    Article  PubMed  PubMed Central  Google Scholar 

  138. Samiei S, van Nijnatten TJA, de Munck L, Keymeulen K, Simons JM, Kooreman LFS, Siesling S et al (2020) Correlation between pathologic complete response in the breast and absence of axillary lymph node metastases after neoadjuvant systemic therapy. Ann Surg 271:574–580. https://doi.org/10.1097/SLA.0000000000003126

    Article  PubMed  Google Scholar 

  139. Guckenberger M, Lievens Y, Bouma AB, Collette L, Dekker A, deSouza NM, Dingemans AC et al (2020) Characterisation and classification of oligometastatic disease: a european Society for Radiotherapy and Oncology and European Organisation for Research and Treatment of Cancer consensus recommendation. Lancet Oncol 21:e18–e28. https://doi.org/10.1016/S1470-2045(19)30718-1

    Article  PubMed  Google Scholar 

  140. Lacaze JL, Aziza R, Chira C, De Maio E, Izar F, Jouve E, Massabeau C et al (2021) Diagnosis, biology and epidemiology of oligometastatic breast cancer. Breast 59:144–156. https://doi.org/10.1016/j.breast.2021.06.010

    Article  PubMed  PubMed Central  Google Scholar 

  141. Lehrer EJ, Singh R, Wang M, Chinchilli VM, Trifiletti DM, Ost P, Siva S et al (2021) Safety and survival rates associated with ablative stereotactic radiotherapy for patients with oligometastatic cancer: a systematic review and meta-analysis. JAMA Oncol 7:92–106. https://doi.org/10.1001/jamaoncol.2020.6146

    Article  PubMed  Google Scholar 

  142. Milano MT, Katz AW, Zhang H, Huggins CF, Aujla KS, Okunieff P (2019) Oligometastatic breast cancer treated with hypofractionated stereotactic radiotherapy: some patients survive longer than a decade. Radiother Oncol 131:45–51. https://doi.org/10.1016/j.radonc.2018.11.022

    Article  PubMed  Google Scholar 

  143. Hanrahan EO, Broglio KR, Buzdar AU, Theriault RL, Valero V, Cristofanilli M, Yin G et al (2005) Combined-modality treatment for isolated recurrences of breast carcinoma: update on 30 years of experience at the University of Texas M.D. Anderson Cancer Center and assessment of prognostic factors. Cancer 104:1158–1171. https://doi.org/10.1002/cncr.21305

    Article  CAS  PubMed  Google Scholar 

  144. Abbott DE, Brouquet A, Mittendorf EA, Andreou A, Meric-Bernstam F, Valero V, Green MC et al (2012) Resection of liver metastases from breast cancer: estrogen receptor status and response to chemotherapy before metastasectomy define outcome. Surgery 151:710–716. https://doi.org/10.1016/j.surg.2011.12.017

    Article  PubMed  Google Scholar 

  145. Palma DA, Olson R, Harrow S, Gaede S, Louie AV, Haasbeek C, Mulroy L et al (2020) Stereotactic ablative radiotherapy for the comprehensive treatment of oligometastatic cancers: long-term results of the SABR-COMET phase II randomized trial. J Clin Oncol 38:2830–2838. https://doi.org/10.1200/JCO.20.00818

    Article  PubMed  PubMed Central  Google Scholar 

  146. Chmura SJ, Winter KA, Woodward WA, Borges VF, Salama JK, Al-Hallaq HA, Matuszak M et al (2022) NRG-BR002: a phase IIR/III trial of standard of care systemic therapy with or without stereotactic body radiotherapy (SBRT) and/or surgical resection (SR) for newly oligometastatic breast cancer (NCT02364557). J Clin Oncol 40:1007–1007. https://doi.org/10.1200/JCO.2022.40.16_suppl.1007

    Article  Google Scholar 

  147. Gradishar WJ, Moran MS, Abraham J, Aft R, Agnese D, Allison KH, Anderson B et al (2022) Breast Cancer, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 20:691–722. https://doi.org/10.6004/jnccn.2022.0030

    Article  PubMed  Google Scholar 

  148. Soran A, Ozbas S, Kelsey SF, Gulluoglu BM (2009) Randomized trial comparing locoregional resection of primary tumor with no surgery in stage IV breast cancer at the presentation (protocol MF07-01): a study of turkish federation of the National Societies for breast Diseases. Breast J 15:399–403. https://doi.org/10.1111/j.1524-4741.2009.00744.x

    Article  PubMed  Google Scholar 

  149. Fitzal F, Bjelic-Radisic V, Knauer M, Steger G, Hubalek M, Balic M, Singer C et al (2019) Impact of breast surgery in primary metastasized breast cancer: outcomes of the prospective randomized phase III ABCSG-28 POSYTIVE trial. Ann Surg 269:1163–1169. https://doi.org/10.1097/SLA.0000000000002771

    Article  PubMed  Google Scholar 

  150. Khan SA, Zhao F, Goldstein LJ, Cella D, Basik M, Golshan M, Julian TB et al (2022) Early local therapy for the primary site in de novo stage IV breast cancer: results of a randomized clinical trial (EA2108). J Clin Oncol 40:978–987. https://doi.org/10.1200/JCO.21.02006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

SDN supported by the Nathanson/Rands Breast Cancer Research Chair, Detroit, MI. LD supported by a Heisenberg Fellowship (DI 2861/1–1) awarded by Deutsche Forschungsgemeinschaft (DFG). L.P receives funding from the Breast Cancer Research Foundation (BCRF-22-133) and is a Susan G. Komen Scholar funded through a Leadership Award (SAC220225). A.R-H supported by a grant from the Spanish Society of Medical Oncology. XHZ supported by NIH grants R01CA221946; R01CA183878; R01CA251950; U01CA253553; DoD BC201371P1.

Author information

Authors and Affiliations

Authors

Contributions

S. David Nathanson conceived the idea for this review article. All the co-authors performed their own literature searches and concept analysis and drafted and critically revised their own work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to S. David Nathanson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Other acknowledgements

The authors wish to acknowledge the crucial contributions to this manuscript of Stephanie Stebens MLIS, AHIP, Sladen Librarian at HFH.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nathanson, S.D., Dieterich, L.C., Zhang, X.HF. et al. Associations amongst genes, molecules, cells, and organs in breast cancer metastasis. Clin Exp Metastasis (2023). https://doi.org/10.1007/s10585-023-10230-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10585-023-10230-w

Keywords

Navigation