Skip to main content

Advertisement

Log in

Bone Marrow-Derived Mononuclear Cells in the Treatment of Neurological Diseases: Knowns and Unknowns

  • Review Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Bone marrow-derived mononuclear cells (BMMNCs) have been used for decades in preclinical and clinical studies to treat various neurological diseases. However, there is still a knowledge gap in the understanding of the underlying mechanisms of BMMNCs in the treatment of neurological diseases. In addition, prerequisite factors for the efficacy of BMMNC administration, such as the optimal route, dose, and number of administrations, remain unclear. In this review, we discuss known and unknown aspects of BMMNCs, including the cell harvesting, administration route and dose; mechanisms of action; and their applications in neurological diseases, including stroke, cerebral palsy, spinal cord injury, traumatic brain injury, amyotrophic lateral sclerosis, autism spectrum disorder, and epilepsy. Furthermore, recommendations on indications for BMMNC administration and the advantages and limitations of BMMNC applications for neurological diseases are discussed.

Graphical Abstract

BMMNCs in the treatment of neurological diseases. BMMNCs have been applied in several neurological diseases. Proposed mechanisms for the action of BMMNCs include homing, differentiation and paracrine effects (angiogenesis, neuroprotection, and anti-inflammation). Further studies should be performed to determine the optimal cell dose and administration route, the roles of BMMNC subtypes, and the indications for the use of BMMNCs in neurological conditions with and without genetic abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Acosta SA, Tajiri N, Hoover J, Kaneko Y, Borlongan CVJS (2015) Intravenous bone marrow stem cell grafts preferentially migrate to spleen and abrogate chronic inflammation in stroke. Stroke 46(9):2616–2627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akiyama Y, Radtke C, Honmou O, Kocsis JDJG (2002) Remyelination of the spinal cord following intravenous delivery of bone marrow cells. Glia 39(3):229–236

    Article  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, Fike JR, Lee HO, Pfeffer K, Lois C, Morrison SJ, Alvarez-Buylla AJN (2003) Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425(6961):968–973

    Article  CAS  PubMed  Google Scholar 

  • Amar AP, Zlokovic BV, Apuzzo MLJN (2003) Endovascular restorative neurosurgery: a novel concept for molecular and cellular therapy of the nervous system. Neurosurgery 52(2):402–413

    Article  PubMed  Google Scholar 

  • Anderson L, Burnstein RM, He X, Luce R, Furlong R, Foltynie T, Sykacek P, Menon DK (2007) Gene expression changes in long term expanded human neural progenitor cells passaged by chopping lead to loss of neurogenic potential in vivo. Exp Neurol 204(2):512–524

    Article  CAS  PubMed  Google Scholar 

  • Andrzejewska A, Dabrowska S, Lukomska B, Janowski MJAS (2021) Mesenchymal stem cells for neurological disorders. Adv Sci 8(7):2002944

    Article  CAS  Google Scholar 

  • Arai K, Harada Y, Tomiyama H, Michishita M, Kanno N, Yogo T, Suzuki Y, Hara Y (2016) Evaluation of the survival of bone marrow-derived mononuclear cells and the growth factors produced upon intramedullary transplantation in rat models of acute spinal cord injury. Res Vet Sci 107:88–94. https://doi.org/10.1016/j.rvsc.2016.05.011

    Article  CAS  PubMed  Google Scholar 

  • Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JMJS (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–966

    Article  CAS  PubMed  Google Scholar 

  • Bakshi A, Hunter C, Swanger S, Lepore A, Fischer I (2004) Minimally invasive delivery of stem cells for spinal cord injury: advantages of the lumbar puncture technique. J Neurosurg 1(3):330–337

    Google Scholar 

  • Barbosa da Fonseca LM, Gutfilen B, Rosado de Castro PH, Battistella V, Goldenberg RC, Kasai-Brunswick T, Chagas CL, Wajnberg E, Maiolino A, Salles Xavier S, Andre C, Mendez-Otero R, de Freitas GR (2010) Migration and homing of bone-marrow mononuclear cells in chronic ischemic stroke after intra-arterial injection. Exp Neurol 221(1):122–128. https://doi.org/10.1016/j.expneurol.2009.10.010

    Article  PubMed  Google Scholar 

  • Battistella V, de Freitas GR, da Fonseca LMB, Mercante D, Gutfilen B, Goldenberg RC, Vieira Dias J, Kasai-Brunswick TH, Wajnberg E, Rosado-de-Castro P (2011) Safety of autologous bone marrow mononuclear cell transplantation in patients with nonacute ischemic stroke. Regen Med 6(1):45–52

    Article  CAS  PubMed  Google Scholar 

  • Beausejour C (2007) Bone marrow-derived cells: the influence of aging and cellular senescence. Handb Exp Pharmacol 180:67–88. https://doi.org/10.1007/978-3-540-68976-8_4

    Article  CAS  Google Scholar 

  • Bedi SS, Walker PA, Shah SK, Jimenez F, Thomas CP, Smith P, Hetz RA, Xue H, Pati S, Dash PK, Cox CS Jr (2013) Autologous bone marrow mononuclear cells therapy attenuates activated microglial/macrophage response and improves spatial learning after traumatic brain injury. J Trauma Acute Care Surg 75(3):410–416. https://doi.org/10.1097/TA.0b013e31829617c6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhasin A, Srivastava M, Bhatia R, Mohanty S, Kumaran S, Bose SJ, Medicine R (2012) Autologous intravenous mononuclear stem cell therapy in chronic ischemic stroke. J Stem Cells Regen Med 8(3):181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhasin A, Srivastava MVP, Mohanty S, Vivekanandhan S, Sharma S, Kumaran S, Bhatia R (2016) Paracrine mechanisms of intravenous bone marrow-derived mononuclear stem cells in chronic ischemic stroke. Cerebrovasc Dis Extra 6(3):107–119. https://doi.org/10.1159/000446404

    Article  PubMed  PubMed Central  Google Scholar 

  • Blair E, Langdon K, McIntyre S, Lawrence D (2019) Survival and mortality in cerebral palsy: observations to the sixth decade from a data linkage study of a total population register and National Death Index. BMC Neurol 19(1):1–11

    Article  Google Scholar 

  • Blanquer M, Moraleda JM, Iniesta F, Gómez-Espuch J, Meca-Lallana J, Villaverde R, Pérez-Espejo MÁ, Ruíz-López FJ, Garcia Santos JM, Bleda PJ (2012) Neurotrophic bone marrow cellular nests prevent spinal motoneuron degeneration in amyotrophic lateral sclerosis patients: a pilot safety study. Stem Cells 30(6):1277–1285

    Article  CAS  PubMed  Google Scholar 

  • Boucherie C, Caumont A-S, Maloteaux J-M, Hermans EJ (2008) In vitro evidence for impaired neuroprotective capacities of adult mesenchymal stem cells derived from a rat model of familial amyotrophic lateral sclerosis (hSOD1G93A). Exp Neurol 212(2):557–561

    Article  CAS  PubMed  Google Scholar 

  • Brazelton TR, Rossi FM, Keshet GI, Blau HMJS (2000) From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290(5497):1775–1779

    Article  CAS  PubMed  Google Scholar 

  • Callera F, de Melo CMJSC, Development, (2007) Magnetic resonance tracking of magnetically labeled autologous bone marrow CD34+ cells transplanted into the spinal cord via lumbar puncture technique in patients with chronic spinal cord injury: CD34+ cells’ migration into the injured site. Stem Cells Dev 16(3):461–466

    Article  PubMed  Google Scholar 

  • Carneiro GD, Godoy JA, Werneck CC (2015) Differentiation of C57/BL6 mice bone marrow mononuclear cells into early endothelial progenitors cells in different culture conditions. Cell Biol Int 39(10):1138–1150

    Article  CAS  PubMed  Google Scholar 

  • Carness JM, Lenart MJ (2019) Current local anesthetic applications in regional anesthesia. In: Whizar-Lugo VM (ed) Topics in local anesthetics. IntechOpen, London, p 73

    Google Scholar 

  • Cassidy JD, Carroll LJ, Peloso PM, Borg J, von Holst H, Holm L, Kraus J, Coronado VG, Injury WHOCCTFoMTB (2004) Incidence, risk factors and prevention of mild traumatic brain injury: results of the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. J Rehabil Med 36(43 Suppl):28–60. https://doi.org/10.1080/16501960410023732

    Article  Google Scholar 

  • CDC (2022) Stroke facts

  • Chen Q-Q, Yan L, Wang C-Z, Wang W-H, Shi H, Su B-B, Zeng Q-H, Du H-T, Wan JJW (2013) Mesenchymal stem cells alleviate TNBS-induced colitis by modulating inflammatory and autoimmune responses. World J Gastroenterol 19(29):4702

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen W, Zhang Y, Yang S, Sun J, Qiu H, Hu X, Niu X, Xiao Z, Zhao Y, Zhou YJCT (2020) NeuroRegen scaffolds combined with autologous bone marrow mononuclear cells for the repair of acute complete spinal cord injury: a 3-year clinical study. Cell Transpl. https://doi.org/10.1177/0963689720950637

    Article  Google Scholar 

  • Colver A, Fairhurst C, Pharoah PO (2014) Cerebral palsy. Lancet 383(9924):1240–1249. https://doi.org/10.1016/S0140-6736(13)61835-8

    Article  PubMed  Google Scholar 

  • Corey S, Bonsack B, Heyck M, Shear A, Sadanandan N, Zhang H, Borlongan CVJBh (2020) Harnessing the anti-inflammatory properties of stem cells for transplant therapy in hemorrhagic stroke. Brain Hemorrhages 1(1):24–33

    Article  PubMed  PubMed Central  Google Scholar 

  • Costa-Ferro ZS, Souza BS, Leal MM, Kaneto CM, Azevedo CM, da Silva IC, Soares MB, Ribeiro-dos-Santos R, DaCosta J (2012) Transplantation of bone marrow mononuclear cells decreases seizure incidence, mitigates neuronal loss and modulates pro-inflammatory cytokine production in epileptic rats. Neurobiol Dis 46(2):302–313

    Article  CAS  PubMed  Google Scholar 

  • Costa-Ferro ZSM, de Oliveira GN, da Silva DV, Marinowic DR, Machado DC, Longo BM, da Costa JCJBS (2020) Intravenous infusion of bone marrow mononuclear cells promotes functional recovery and improves impaired cognitive function via inhibition of Rho guanine nucleotide triphosphatases and inflammatory signals in a model of chronic epilepsy. Brain Struct Funct 225(9):2799–2813

    Article  CAS  PubMed  Google Scholar 

  • Costa-Ferro ZSM, Doprado-Lima PAS, Onsten GA, Oliveira GN, Brito GC, Ghilardi IM, Dossantos PG, Bertinatto RJ, Dasilva DV, Salamoni SD (2022) Bone marrow mononuclear cell transplant prevents rat depression and modulates inflammatory and neurogenic molecules. Progr Neuro-Psychopharmacol Biol Psychiatry 113:110455

    Article  CAS  Google Scholar 

  • Cox CS Jr (2018) Cellular therapy for traumatic neurological injury. Pediatr Res 83(1–2):325–332. https://doi.org/10.1038/pr.2017.253

    Article  CAS  PubMed  Google Scholar 

  • Cox CS Jr, Baumgartner JE, Harting MT, Worth LL, Walker PA, Shah SK, Ewing-Cobbs L, Hasan KM, Day M-C, Lee DJN (2011) Autologous bone marrow mononuclear cell therapy for severe traumatic brain injury in children. Neurosurgery 68(3):588–600. https://doi.org/10.1227/NEU.0b013e318207734c

    Article  PubMed  Google Scholar 

  • Cox CS Jr, Hetz RA, Liao GP, Aertker BM, Ewing-Cobbs L, Juranek J, Savitz SI, Jackson ML, Romanowska-Pawliczek AM, Triolo FJSC (2017) Treatment of severe adult traumatic brain injury using bone marrow mononuclear cells. Stem Cells 35(4):1065–1079. https://doi.org/10.1002/stem.2538

    Article  CAS  PubMed  Google Scholar 

  • Crisostomo PR, Wang Y, Markel TA, Wang M, Lahm T, Meldrum DR (2008) Human mesenchymal stem cells stimulated by TNF-α, LPS, or hypoxia produce growth factors by an NFκB-but not JNK-dependent mechanism. Am J Physiol-Cell Physiol 294(3):C675–C682

    Article  CAS  PubMed  Google Scholar 

  • Dabrowska S, Andrzejewska A, Strzemecki D, Muraca M, Janowski M (2019) Human bone marrow mesenchymal stem cell-derived extracellular vesicles attenuate neuroinflammation evoked by focal brain injury in rats. J Neuroinflamm 16:1–15

    Article  Google Scholar 

  • DaCosta JC, Portuguez MW, Marinowic DR, Schilling LP, Torres CM, DaCosta DI, Carrion MJM, Raupp EF, Machado DC, Soder RB (2018) Safety and seizure control in patients with mesial temporal lobe epilepsy treated with regional superselective intra-arterial injection of autologous bone marrow mononuclear cells. J Tissue Eng Regen Med 12(2):e648–e656

    Article  CAS  PubMed  Google Scholar 

  • Dalic L, Cook MJJ (2016) Managing drug-resistant epilepsy: challenges and solutions. NDT 12:2605

    Article  CAS  Google Scholar 

  • Dantzer RJ (2018) Neuroimmune interactions: from the brain to the immune system and vice versa. Physiol Rev 98(1):477–504

    Article  CAS  PubMed  Google Scholar 

  • Darabi S, Tiraihi T, Delshad A, Sadeghizadeh M (2013) A new multistep induction protocol for the transdifferentiation of bone marrow stromal stem cells into GABAergic neuron-like cells. Iran Biomed J 17(1):8

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Andres J (2022) Intrathecal drug delivery: advances and applications in the management of chronic pain patient. Front Pain Res 3:74

    Article  Google Scholar 

  • Dedeepiya VD, Rao YY, Jayakrishnan GA, Parthiban JK, Baskar S, Manjunath SR, Senthilkumar R, Abraham SJ (2012) Index of CD34+ cells and mononuclear cells in the bone marrow of spinal cord injury patients of different age groups: a comparative analysis. Bone Marrow Res. https://doi.org/10.1155/2012/787414

    Article  PubMed  PubMed Central  Google Scholar 

  • Doeppner TR, Herz J, Görgens A, Schlechter J, Ludwig A-K, Radtke S, de Miroschedji K, Horn PA, Giebel B (2015) Extracellular vesicles improve post-stroke neuroregeneration and prevent postischemic immunosuppression. Stem Cells Transl Med 4(10):1131–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eglitis MA, Mezey ÉJ (1997) Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci USA 94(8):4080–4085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elia CA, Tamborini M, Rasile M, Desiato G, Marchetti S, Swuec P, Mazzitelli S, Clemente F, Anselmo A, Matteoli MJC (2019) Intracerebral injection of extracellular vesicles from mesenchymal stem cells exerts reduced Aβ plaque burden in early stages of a preclinical model of Alzheimer’s disease. Cells 8(9):1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engel JJE (2001) A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE Task Force on Classification and Terminology. Epilepsia 42(6):796–803

    Article  PubMed  Google Scholar 

  • Finlay-Morreale H (2021) Invasive therapy for children with autism is not justified. Stem Cells Transl Med 10(6):826

    Article  PubMed  PubMed Central  Google Scholar 

  • Fischer UM, Harting MT, Jimenez F, Monzon-Posadas WO, Xue H, Savitz SI, Laine GA, Cox CS (2009) Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev 18(5):683–692

    Article  CAS  PubMed  Google Scholar 

  • Friedrich MA, Martins MP, Araújo MD, Klamt C, Vedolin L, Garicochea B, Raupp EF, Ammar JSE, Machado DC, Da Costa JC (2012) Intra-arterial infusion of autologous bone marrow mononuclear cells in patients with moderate to severe middle cerebral artery acute ischemic stroke. Cell Transpl 21:13–21

    Article  Google Scholar 

  • Gautheron F, Georgievski A, Garrido C, Quéré RJ (2023) Bone marrow-derived extracellular vesicles carry the TGF-β signal transducer Smad2 to preserve hematopoietic stem cells in mice. Cell Death Discov 9(1):117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghafouri-Fard S, Niazi V, Taheri MJH (2021) Contribution of extracellular vesicles in normal hematopoiesis and hematological malignancies. Heliyon 7(1):e06030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardiman O, Van Den Berg LH (2011) Clinical diagnosis and management of amyotrophic lateral sclerosis. Nat Rev Neurol 7(11):639–649

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa K, Chan SJ, Mandeville ET, Park JH, Bruzzese M, Montaner J, Arai K, Rosell A, Lo EH (2018) Protective effects of endothelial progenitor cell-derived extracellular mitochondria in brain endothelium. Stem Cells 36(9):1404–1410

    Article  CAS  PubMed  Google Scholar 

  • Hellström M, Gerhardt H, Kalén M, Li X, Eriksson U, Wolburg H, Betsholtz C (2001) Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 153(3):543–554

    Article  PubMed  PubMed Central  Google Scholar 

  • Herz J, Filiano AJ, Smith A, Yogev N, Kipnis JJI (2017) Myeloid cells in the central nervous system. Immunity 46(6):943–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hess DC, Borlongan CJ (2008) Stem cells and neurological diseases. Cell Prolif 41:94–114

    Article  PubMed  Google Scholar 

  • Hoang DM, Pham PT, Bach TQ, Ngo AT, Nguyen QT, Phan TT, Nguyen GH, Le PT, Hoang VT, Forsyth NR (2022) Stem cell-based therapy for human diseases. Sig Transduct Target Ther 7(1):272

    Article  Google Scholar 

  • Hong Y, Yu Q, Kong Z, Wang M, Zhang R, Li Y, Liu YJCD (2020) Exogenous endothelial progenitor cells reached the deficient region of acute cerebral ischemia rats to improve functional recovery via Bcl-2. Cardiovasc Diagn Ther 10(4):695

    Article  PubMed  PubMed Central  Google Scholar 

  • Hristov M, Weber C (2008) Endothelial progenitor cells in vascular repair and remodeling. Pharmacol Res 58(2):148–151

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Wong S, Snyder EY, Hamblin MH, Lee J-PJ (2014) Human neural stem cells rapidly ameliorate symptomatic inflammation in early-stage ischemic-reperfusion cerebral injury. Stem Cell Res Ther 5(6):1–16

    Article  Google Scholar 

  • Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW, Entman ML, Michael LH, Hirschi KK, Goodell MA (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 107(11):1395–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon O, Song SJ, Bhang SH, Choi C-Y, Kim MJ, Kim B-S (2007) Additive effect of endothelial progenitor cell mobilization and bone marrow mononuclear cell transplantation on angiogenesis in mouse ischemic limbs. J Biomed Sci 14(3):323–330

    Article  CAS  PubMed  Google Scholar 

  • Kajitani T, Endo T, Iwabuchi N, Inoue T, Takahashi Y, Abe T, Niizuma K, Tominaga TJ (2021) Association of intravenous administration of human Muse cells with deficit amelioration in a rat model of spinal cord injury. J Neurosurg 34(4):648–655

    Google Scholar 

  • Kalwitz G, Andreas K, Endres M, Neumann K, Notter M, Ringe J, Sittinger M, Kaps C (2010) Chemokine profile of human serum from whole blood: migratory effects of CXCL-10 and CXCL-11 on human mesenchymal stem cells. Connect Tissue Res 51(2):113–122

    Article  CAS  PubMed  Google Scholar 

  • Keaney J, Campbell M (2015) The dynamic blood–brain barrier. FEBS J 282(21):4067–4079

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi-Taura A, Okinaka Y, Takeuchi Y, Ogawa Y, Maeda M, Kataoka Y, Yasui T, Kimura T, Gul S, Claussen CJS (2020) Bone marrow mononuclear cells activate angiogenesis via gap junction-mediated cell–cell interaction. Stroke 51(4):1279–1289

    Article  CAS  PubMed  Google Scholar 

  • Kim D-k, Nishida H, An SY, Shetty AK, Bartosh TJ, Prockop DJ (2016) Chromatographically isolated CD63+ CD81+ extracellular vesicles from mesenchymal stromal cells rescue cognitive impairments after TBI. Proc Natl Acad Sci USA 113(1):170–175

    Article  CAS  PubMed  Google Scholar 

  • Kong Z, Hong Y, Zhu J, Cheng X (2018) Endothelial progenitor cells improve functional recovery in focal cerebral ischemia of rat by promoting angiogenesis via VEGF. J Clin Neurosci 55:116–121

    Article  CAS  PubMed  Google Scholar 

  • Kuroda Y, Wakao S, Kitada M, Murakami T, Nojima M (2013) Isolation, culture and evaluation of multilineage-differentiating stress-enduring (Muse) cells. Nat Protoc 8(7):1391–1415

    Article  PubMed  Google Scholar 

  • Lampron A, Pimentel-Coelho PM (2013) Migration of bone marrow-derived cells into the central nervous system in models of neurodegeneration. J Comp Neurol 521(17):3863–3876

    Article  CAS  PubMed  Google Scholar 

  • Li ZJ (2013) CD133: a stem cell biomarker and beyond. Exp Hematol Oncol 2(1):1–8

    Article  Google Scholar 

  • Li T-S, Hamano K, Nishida M, Hayashi M, Ito H, Mikamo A, Matsuzaki MJ (2003) CD117+ stem cells play a key role in therapeutic angiogenesis induced by bone marrow cell implantation. Am J Physiol-Heart Circ Physiol 285(3):H931–H937

    Article  CAS  PubMed  Google Scholar 

  • Li H, Wang C, He T, Zhao T, Chen Y-Y, Shen Y-l, Zhang X, Wang L-l (2019) Mitochondrial transfer from bone marrow mesenchymal stem cells to motor neurons in spinal cord injury rats via gap junction. Theranostics 9(7):2017–2035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Chen YH, Zhang K (2020) Neuroprotective properties and therapeutic potential of bone marrow-derived microglia in Alzheimer’s disease. Am J Alzheimers Dis Other Demen 35:1533317520927169. https://doi.org/10.1177/1533317520927169

    Article  PubMed  Google Scholar 

  • Liao GP, Harting MT, Hetz RA, Walker PA, Shah SK, Corkins CJ, Hughes TG, Jimenez F, Kosmach SC (2015) Autologous bone marrow mononuclear cells reduce therapeutic intensity for severe traumatic brain injury in children. Pediatr Crit Care Med 16(3):245. https://doi.org/10.1097/PCC.0000000000000324

    Article  PubMed  PubMed Central  Google Scholar 

  • Liem NT, Anh TL, Thai TTH, Anh BV (2017) Bone marrow mononuclear cells transplantation in treatment of established bronchopulmonary dysplasia: a case report. Am J Case Rep 18:1090

    Article  PubMed  PubMed Central  Google Scholar 

  • Liem NT, Chinh VD, Phuong DTM, Van Doan N, Forsyth NR, Heke M, Thi PAN, Nguyen X-H (2020a) Outcomes of bone marrow-derived mononuclear cell transplantation for patients in persistent vegetative state after drowning: report of five cases. Front Pediatr 8:564

    Article  PubMed  PubMed Central  Google Scholar 

  • Liem NT, Huyen TL, Huong LT, Doan NV, Anh BV, Anh NTP, Tung DT (2020b) Outcomes of bone marrow mononuclear cell transplantation for neurological sequelae due to intracranial hemorrhage incidence in the neonatal period: report of four cases. Front Pediatr 7:543

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X, Fu X, Dai G, Wang X, Zhang Z, Cheng H, Zheng P (2017) Comparative analysis of curative effect of bone marrow mesenchymal stem cell and bone marrow mononuclear cell transplantation for spastic cerebral palsy. J Transl Med 15(1):1–9

    Article  Google Scholar 

  • Liu K, Guo L, Zhou Z, Pan M, Yan C (2019) Mesenchymal stem cells transfer mitochondria into cerebral microvasculature and promote recovery from ischemic stroke. Microvasc Res 123:74–80

    Article  CAS  PubMed  Google Scholar 

  • Majka M, Janowska-Wieczorek A, Ratajczak J, Ehrenman K, Pietrzkowski Z, Kowalska MA, Gewirtz AM, Emerson SG (1999) Numerous growth factors, cytokines, and chemokines are secreted by human CD34+ cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner: Presented at the 41st Annual Meeting of the American Society of Hematology, New Orleans, LA, December 3–7, 1999, and published in abstract form in Blood. 1999; 94 (suppl 1): 465a. J Am Soc Hematol 97(10):3075–3085

    Google Scholar 

  • Malliaras K, Marbán EJ (2011) Cardiac cell therapy: where we’ve been, where we are, and where we should be headed. Br Med Bull 98(1):161–185

    Article  PubMed  PubMed Central  Google Scholar 

  • Mancías-Guerra C, Marroquín-Escamilla AR, González-Llano O, Villarreal-Martínez L, Jaime-Pérez JC, García-Rodríguez F, Valdés-Burnes SL, Rodríguez-Romo LN, Barrera-Morales DC, Sánchez-Hernández JJJC (2014) Safety and tolerability of intrathecal delivery of autologous bone marrow nucleated cells in children with cerebral palsy: an open-label phase I trial. Cytotherapy 16(6):810–820

    Article  PubMed  Google Scholar 

  • Matejuk A, Vandenbark AA, Offner HJ (2021) Cross-talk of the CNS with immune cells and functions in health and disease. Front Neurol 12:672455

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathews D, Sugarman J, Bok H, Blass DM, Coyle J, Duggan P, Finkel J, Greely H, Hillis A, Hoke AJN (2008) Cell-based interventions for neurologic conditions: ethical challenges for early human trials. Neurology 71(4):288–293

    Article  CAS  PubMed  Google Scholar 

  • Matsubara T, Umemura Y, Ogura H, Matsuura H, Ebihara T, Matsumoto H, Yamakawa K, Shimizu K, Okada H, Shimazu TJ (2021) Bone marrow-derived mononuclear cell transplantation can reduce systemic inflammation and endothelial glycocalyx damage in sepsis. Shock 56(2):260–267

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto J, Stewart T, Sheng L, Li N, Bullock K, Song N, Shi M, Banks WA, Zhang JJ (2017) Transmission of α-synuclein-containing erythrocyte-derived extracellular vesicles across the blood-brain barrier via adsorptive mediated transcytosis: another mechanism for initiation and progression of Parkinson’s disease? Acta Neuropathol Commun 5(1):1–16

    Article  Google Scholar 

  • McGuckin CP, Jurga M, Miller A-M, Sarnowska A, Wiedner M, Boyle NT, Lynch MA, Jablonska A, Drela K, Lukomska BJ (2013) Ischemic brain injury: a consortium analysis of key factors involved in mesenchymal stem cell-mediated inflammatory reduction. Arch Biochem Biophys 534(1–2):88–97

    Article  CAS  PubMed  Google Scholar 

  • Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SRJS (2000a) Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290(5497):1779–1782

    Article  CAS  PubMed  Google Scholar 

  • Milczarek O, Jarocha D, Starowicz-Filip A, Kwiatkowski S, Badyra B, Majka MJ (2018) Multiple autologous bone marrow-derived CD271+ mesenchymal stem cell transplantation overcomes drug-resistant epilepsy in children. Stem Cells Transl Med 7(1):20–33

    Article  CAS  PubMed  Google Scholar 

  • Miyan JA, Zendah M, Mashayekhi F, Owen-Lynch PJ (2006) Cerebrospinal fluid supports viability and proliferation of cortical cells in vitro, mirroring in vivo development. Cerebrospinal Fluid Res 3(1):1–7

    Article  Google Scholar 

  • Moniche F, Gonzalez A, Gonzalez-Marcos JR, Carmona M, Pinero P, Espigado I, Garcia-Solis D, Cayuela A, Montaner J, Boada C, Rosell A, Jimenez MD, Mayol A, Gil-Peralta A (2012) Intra-arterial bone marrow mononuclear cells in ischemic stroke: a pilot clinical trial. Stroke 43(8):2242–2244. https://doi.org/10.1161/STROKEAHA.112.659409

    Article  PubMed  Google Scholar 

  • Moniche F, Montaner J, Gonzalez-Marcos J-R, Carmona M, Piñero P, Espigado I, Cayuela A, Escudero I, De La Torre-Laviana F-J, Boada CJ (2014) Intra-arterial bone marrow mononuclear cell transplantation correlates with GM-CSF, PDGF-BB, and MMP-2 serum levels in stroke patients: results from a clinical trial. Cell Transpl 23:57–64

    Article  Google Scholar 

  • Montzka K, Lassonczyk N, Tschöke B, Neuss S, Führmann T, Franzen R, Smeets R, Brook GA (2009) Neural differentiation potential of human bone marrow-derived mesenchymal stromal cells: misleading marker gene expression. BMC Neurosci 10:1–12

    Article  Google Scholar 

  • Mukherjee SB (2017) Autism spectrum disorders—diagnosis and management. Indian J Pediatr 84(4):307–314

    Article  PubMed  Google Scholar 

  • Nguyen LT, Nguyen AT, Vu CD, Ngo DV, Bui AV (2017) Outcomes of autologous bone marrow mononuclear cells for cerebral palsy: an open label uncontrolled clinical trial. BMC Pediatr 17(1):1–6

    Article  Google Scholar 

  • Nguyen TL, Nguyen HP, Nguyen TKJH (2018) The effects of bone marrow mononuclear cell transplantation on the quality of life of children with cerebral palsy. Health Qual Life Outcomes 16(1):1–7

    Article  CAS  Google Scholar 

  • Nguyen LT, Hoang DM, Nguyen KT, Bui DM, Nguyen HT, Le HT, Hoang VT, Bui HT, Dam PT (2021) Type 2 diabetes mellitus duration and obesity alter the efficacy of autologously transplanted bone marrow-derived mesenchymal stem/stromal cells. Stem Cells Transl Med 10(9):1266–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen Thanh L, Nguyen HP, Ngo MD, Bui VA, Dam PT, Bui HTP, Ngo DV, Tran KT, Dang TTT, Duong BD (2021) Outcomes of bone marrow mononuclear cell transplantation combined with interventional education for autism spectrum disorder. Stem Cells Transl Med 10(1):14–26

    Article  PubMed  Google Scholar 

  • Norat P, Soldozy S, Sokolowski JD, Gorick CM, Kumar JS, Chae Y, Yağmurlu K, Prada F, Walker M, Levitt MR (2020) Mitochondrial dysfunction in neurological disorders: exploring mitochondrial transplantation. Npj Regen Med 5(1):22

    Article  PubMed  PubMed Central  Google Scholar 

  • Ogawa Y, Saino O, Okinaka Y, Kikuchi-Taura A, Takeuchi Y, Taguchi AJ (2021) Bone marrow mononuclear cells transplantation and training increased transplantation of energy source transporters in chronic stroke. J Stroke Cerebrovasc Dis 30(8):105932

    Article  PubMed  Google Scholar 

  • Otero-Ortega L, Laso-García F, Gómez-de Frutos MdC, Rodríguez-Frutos B, Pascual-Guerra J, Fuentes B, Díez-Tejedor E, Gutiérrez-Fernández MJ (2017) White matter repair after extracellular vesicles administration in an experimental animal model of subcortical stroke. Sci Rep 7(1):44433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park C, Lee JY, Yoon Y-S (2011) Role of bone marrow-derived lymphatic endothelial progenitor cells for lymphatic neovascularization. Trends Cardiovasc Med 21(5):135–140

    Article  PubMed  PubMed Central  Google Scholar 

  • Patterson AM, Pelus LMJ (2017) G-CSF in stem cell mobilization: new insights, new questions. Ann Blood 2:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Pisati F, Bossolasco P, Meregalli M, Cova L, Belicchi M, Gavina M, Marchesi C, Calzarossa C, Soligo D, Lambertenghi-Deliliers GJ (2007) Induction of neurotrophin expression via human adult mesenchymal stem cells: implication for cell therapy in neurodegenerative diseases. Cell Transpl 16(1):41–55

    Article  Google Scholar 

  • Prabhakar S, Marwaha N, Lal V, Sharma RR, Rajan R, Khandelwal NJNI (2012) Autologous bone marrow-derived stem cells in amyotrophic lateral sclerosis: a pilot study. Neurology 60(5):465

    Google Scholar 

  • Prasad K, Mohanty S, Bhatia R, Srivastava M, Garg A, Srivastava A, Goyal V, Tripathi M, Kumar A, Bal CJ (2012) Autologous intravenous bone marrow mononuclear cell therapy for patients with subacute ischaemic stroke: a pilot study. Indian J Med Res 136(2):221

    PubMed  PubMed Central  Google Scholar 

  • Prasad K, Sharma A, Garg A, Mohanty S, Bhatnagar S, Johri S, Singh KK, Nair V, Sarkar RS, Gorthi SP, Hassan KM, Prabhakar S, Marwaha N, Khandelwal N, Misra UK, Kalita J, Nityanand S, Inve STSG (2014) Intravenous autologous bone marrow mononuclear stem cell therapy for ischemic stroke: a multicentric, randomized trial. Stroke 45(12):3618–3624. https://doi.org/10.1161/STROKEAHA.114.007028

    Article  CAS  PubMed  Google Scholar 

  • Ramos-Zaldívar HM, Polakovicova I, Salas-Huenuleo E, Corvalán AH, Kogan MJ, Yefi CP, Andia MEJF (2022) Extracellular vesicles through the blood–brain barrier: a review. Fluids Barriers CNS 19(1):1–15

    Article  Google Scholar 

  • Reed SL, Escayg AJ (2021) Extracellular vesicles in the treatment of neurological disorders. Neurobiol Dis 157:105445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reed LJ, Attarian S, Olson TR, Singh S, Shestopalov A, Friedman EW (2018) Feasibility and safety of targeting the anterior superior iliac spine to perform a bone marrow procedure: a prospective, clinical study. J Clin Pathol 71(12):1116–1119

    Article  PubMed  Google Scholar 

  • Reza-Zaldivar EE, Hernández-Sapiéns MA, Gutiérrez-Mercado YK, Sandoval-Ávila S, Gomez-Pinedo U, Márquez-Aguirre AL, Vázquez-Méndez E, Padilla-Camberos E, Canales-Aguirre AAJ (2019) Mesenchymal stem cell-derived exosomes promote neurogenesis and cognitive function recovery in a mouse model of Alzheimer’s disease. Neural Regener Res 14(9):1626

    Article  Google Scholar 

  • Rosado-de-Castro PH, Schmidt Fda R, Battistella V, Lopes de Souza SA, Gutfilen B, Goldenberg RC, Kasai-Brunswick TH, Vairo L, Silva RM, Wajnberg E, Americano A (2013a) Biodistribution of bone marrow mononuclear cells after intra-arterial or intravenous transplantation in subacute stroke patients. Regen Med 8(2):145–155. https://doi.org/10.2217/rme.13.2

    Article  CAS  PubMed  Google Scholar 

  • Rosado-de-Castro PH, Schmidt FR, Battistella V, Lopes de Souza SA, Gutfilen B, Goldenberg RC, Kasai-Brunswick TH, Vairo L, Silva RM, Wajnberg EJ (2013b) Biodistribution of bone marrow mononuclear cells after intra-arterial or intravenous transplantation in subacute stroke patients. Regener Med 8(2):145–155

    Article  CAS  Google Scholar 

  • Rosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M, Damiano D, Dan B, Jacobsson B (2007) A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl 109:8–14

    PubMed  Google Scholar 

  • Rosenfeld JV, Maas AI, Bragge P, Morganti-Kossmann MC, Manley GT, Gruen RL (2012) Early management of severe traumatic brain injury. Lancet 380(9847):1088–1098. https://doi.org/10.1016/S0140-6736(12)60864-2

    Article  PubMed  Google Scholar 

  • Ruan J, Miao X, Schlüter D, Lin L, Wang XJMT (2021) Extracellular vesicles in neuroinflammation: pathogenesis, diagnosis, and therapy. Mol Therapy 29(6):1946–1957

    Article  CAS  Google Scholar 

  • Ruiz-López FJ, Guardiola J, Izura V, Gómez-Espuch J, Iniesta F, Blanquer M, López-San Román J, Saez V, De Mingo P (2016) Breathing pattern in a phase I clinical trial of intraspinal injection of autologous bone marrow mononuclear cells in patients with amyotrophic lateral sclerosis. Respir Physiol Neurobiol 221:54–58

    Article  PubMed  Google Scholar 

  • Saha A, Patel S, Xu L, Scotland P, Schwartzman J, Filiano AJ, Kurtzberg J, Balber AE (2019) Human umbilical cord blood monocytes, but not adult blood monocytes, rescue brain cells from hypoxic-ischemic injury: mechanistic and therapeutic implications. PLoS ONE 14(9):e0218906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T, Willing A, Freeman T, Saporta S, Janssen W (2000) Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164(2):247–256

    Article  CAS  PubMed  Google Scholar 

  • Sane H, Sharma A, Gokulchandran N, Kalburgi S, Paranjape A (2016) Neurorestoration in amyotrophic lateral sclerosis-a case report. Indian J Stem Cell Therapy 4:29–37

    Google Scholar 

  • Savitz SI, Misra V, Kasam M, Juneja H, Cox CS Jr, Alderman S, Aisiku I, Kar S, Gee A, Grotta JC (2011) Intravenous autologous bone marrow mononuclear cells for ischemic stroke. Ann Neurol 70(1):59–69

    Article  PubMed  Google Scholar 

  • Sharma S, Yang B, Strong R, Xi X, Brenneman M, Grotta JC, Aronowski J, Savitz SI (2010) Bone marrow mononuclear cells protect neurons and modulate microglia in cell culture models of ischemic stroke. J Neurosci Res 88(13):2869–2876

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Kulkarni P, Sane H, Gokulchandran N, Badhe P, Lohia M, Mishra PJ (2012) Positron emission tomography-computed tomography scan captures the effects of cellular therapy in a case of cerebral palsy. J Clin Case Rep 2(13):195

    Article  Google Scholar 

  • Sharma A, Badhe P, Gokulchandran N, Kulkarni P, Mishra P, Shetty A, Sane HJJ (2013a) An improved case of autism as revealed by PET CT scan in patient transplanted with autologous bone marrow derived mononuclear cells. J Stem Cell Res Ther 3(139):2

    Google Scholar 

  • Sharma A, Gokulchandran N, Sane H, Kulkarni P, Thomas N, Paranjape A, Badhe PJA (2013b) Intrathecal autologous bone marrow mononuclear cell transplantation in a case of adult autism. Autism 3(2):113

    CAS  Google Scholar 

  • Sharma A, Gokulchandran N, Sane H, Nagrajan A, Paranjape A, Kulkarni P, Shetty A, Mishra P, Kali M, Biju HJ (2013c) Autologous bone marrow mononuclear cell therapy for autism: an open label proof of concept study. Stem Cells Int 2013:1–13

    Article  Google Scholar 

  • Sharma A, Gokulchandran N, Shetty A, Sane H, Kulkarni P, Badhe PJ (2013d) Autologous bone marrow mononuclear cells may be explored as a novel potential therapeutic option for autism. Stem Cells Int 3(282):2

    Google Scholar 

  • Sharma A, Sane H, Paranjape A, Gokulchandran N, Kulkarni P, Nagrajan A, Badhe PJ (2013e) Positron emission tomography—computer tomography scan used as a monitoring tool following cellular therapy in cerebral palsy and mental retardation—a case report. Case Rep Neurol Med 2013:1–6

    Google Scholar 

  • Sharma A, Sane H, Gokulchandran N, Khopkar D, Paranjape A, Sundaram J, Gandhi S, Badhe P (2014) Autologous bone marrow mononuclear cells intrathecal transplantation in chronic stroke. Stroke Res Treat 2014:234095. https://doi.org/10.1155/2014/234095

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Gokulchandran N, Sane H, Patil A, Shetty A, Biju H, Kulkarni P, Badhe PJ (2015a) Amelioration of autism by autologous bone marrow mononuclear cells and neurorehabilitation: a case report. Stem Cells Int 3(10):304–309

    Google Scholar 

  • Sharma A, Sane H, Gokulchandran N, Kulkarni P, Gandhi S, Sundaram J, Paranjape A, Shetty A, Bhagwanani K, Biju HJ (2015b) A clinical study of autologous bone marrow mononuclear cells for cerebral palsy patients: a new frontier. Stem Cells Int 2015:1–11

    Article  Google Scholar 

  • Sharma A, Sane H, Kulkarni P, D’sa M, Gokulchandran N, Badhe PJCJ (2015c) Improved quality of life in a case of cerebral palsy after bone marrow mononuclear cell transplantation. Cell J 17(2):389

    PubMed  PubMed Central  Google Scholar 

  • Sharma AK, Sane HM, Paranjape AA, Gokulchandran N, Nagrajan A, Dsa M, Badhe PBJ (2015d) The effect of autologous bone marrow mononuclear cell transplantation on the survival duration in amyotrophic lateral sclerosis-a retrospective controlled study. Am J Stem Cells 4(1):50

    PubMed  PubMed Central  Google Scholar 

  • Sharma A, Gokulchandran N, Sane H, Kulkarni P, Pai SJ (2017) A case of autism showing clinical improvements after cellular therapy along with PET CT evidence. J Stem Cell Res Ther 2(4):00070

    Google Scholar 

  • Sharma A, Gokulchandran N, Sane H, Kulkarni P, Nivins S, Maheshwari M, Badhe PJIB, Journal B (2018) Therapeutic effects of cellular therapy in a case of adult autism spectrum of disorder. Int Biol Biomed J 4(2):98–103

    Google Scholar 

  • Sharma A, Sane H, Pradhan R, Paranjape A, Gokulchandran N, Kaur J, Das R, Badhe P (2019) Case report neuroregenerative rehabilitation therapy with long-term lithium in a male amyotrophic lateral sclerosis patient: a case report. Int J Med Sci Clin Invent 6:4337–4344

    Article  Google Scholar 

  • Sharma A, Sane H, Gokulchandran N, Kulkarni P, Jose A, Nair V, Das R, Lakhanpal V, Badhe P (2020a) Intrathecal transplantation of autologous bone marrow mononuclear cells in patients with sub-acute and chronic spinal cord injury: an open-label study. Int J Health Sci (qassim) 14(2):24–32

    PubMed  Google Scholar 

  • Sharma A, Sane H, Gokulchandran N, Kulkarni P, Jose A, Nair V, Das R, Lakhanpal V (2020b) Intrathecal transplantation of autologous bone marrow mononuclear cells in patients with sub-acute and chronic spinal cord injury: an open-label study. Cell Regen 14(2):24

    Google Scholar 

  • Sharma A, Sane H, Paranjape A, Pradhan R, Das R, Biju H, Gokulchandran N, Badhe PJC (2020c) Multiple doses of cell therapy and neurorehabilitation in amyotrophic lateral sclerosis: a case report. Clin Pract 10(3):82–85

    Article  Google Scholar 

  • Sharma AK, Gokulchandran N, Kulkarni PP, Sane HM, Sharma R, Jose A, Badhe PB (2020d) Cell transplantation as a novel therapeutic strategy for autism spectrum disorders: a clinical study. Am J Stem Cells 9(5):89

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma AK, Sane HM, Kulkarni PP, Gokulchandran N, Biju H, Badhe PB (2020e) Autologous bone marrow mononuclear cell transplantation in patients with chronic traumatic brain injury-a clinical study. Cell Regen 9(1):3. https://doi.org/10.1186/s13619-020-00043-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma AK, Sane HM, Kulkarni PP, Gokulchandran N, Biju H, Badhe PB (2020f) Autologous bone marrow mononuclear cell transplantation in patients with chronic traumatic brain injury-a clinical study. Cell Regen 9(1):1–11

    Article  Google Scholar 

  • Sohni A, Verfaillie CM (2013) Mesenchymal stem cells migration homing and tracking. Stem Cells Int 2013:1–8

    Article  Google Scholar 

  • Somoza R, Conget P, Rubio FJ (2008) Neuropotency of human mesenchymal stem cell cultures: clonal studies reveal the contribution of cell plasticity and cell contamination. Biol Blood Marrow 14(5):546–555

    Article  CAS  Google Scholar 

  • Song S, Song S, Zhang H, Cuevas J, Sanchez-Ramos JJ (2007) Comparison of neuron-like cells derived from bone marrow stem cells to those differentiated from adult brain neural stem cells. Stem Cells Dev 16(5):747–756

    Article  CAS  PubMed  Google Scholar 

  • Stonesifer C, Corey S, Ghanekar S, Diamandis Z, Acosta SA, Borlongan CV (2017) Stem cell therapy for abrogating stroke-induced neuroinflammation and relevant secondary cell death mechanisms. Progr Neurobiol 158:94–131

    Article  CAS  Google Scholar 

  • Stratman AN, Malotte KM, Mahan RD, Davis MJ, Davis GEJB (2009) Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. J Am Soc Hematol 114(24):5091–5101

    CAS  Google Scholar 

  • Suárez-Monteagudo C, Hernández-Ramírez P, Álvarez-González L, García-Maeso I, de la Cuétara-Bernal K, Castillo-Díaz L, Bringas-Vega ML, Martínez-Aching G, Morales-Chacón LM (2009) Autologous bone marrow stem cell neurotransplantation in stroke patients. An open study. Neuroscience 27(3):151–161

    Google Scholar 

  • Suarez-Monteagudo C, Hernandez-Ramirez P, Alvarez-Gonzalez L, Garcia-Maeso I, de la Cuetara-Bernal K, Castillo-Diaz L, Bringas-Vega ML, Martinez-Aching G, Morales-Chacon LM, Baez-Martin MM, Sanchez-Catasus C, Carballo-Barreda M, Rodriguez-Rojas R, Gomez-Fernandez L, Alberti-Amador E, Macias-Abraham C, Balea ED, Rosales LC, Del Valle PL, Ferrer BB, Gonzalez RM, Bergado JA (2009) Autologous bone marrow stem cell neurotransplantation in stroke patients. An open study. Restor Neurol Neurosci 27(3):151–161. https://doi.org/10.3233/RNN-2009-0483

    Article  PubMed  Google Scholar 

  • Suda S (2017) Bone marrow-derived mononuclear cells. In: Houkin K, Abe K, Kuroda S (eds) Cell therapy against cerebral stroke. Springer, Tokyo, pp 3–14

    Chapter  Google Scholar 

  • Suda S, Katsura KI, Saito M, Kamiya N, Katayama Y (2014) Valproic acid enhances the effect of bone marrow-derived mononuclear cells in a rat ischemic stroke model. Brain Res 1565:74–81

    Article  CAS  PubMed  Google Scholar 

  • Sudulaguntla A, Nanjwade B, Chandy VJ (2017) Stem cells: cultivation and routes of administration. Current Trends Biomed Eng Biosci 2:555579

    Article  Google Scholar 

  • Sugihara S, Yamamoto Y, Matsuura T, Narazaki G, Yamasaki A, Igawa G, Matsubara K, Miake J, Igawa O, Shigemasa CJ (2007) Age-related BM-MNC dysfunction hampers neovascularization. Mech Ageing Dev 128(9):511–516

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Ishikawa N, Omae K, Hirai T, Ohnishi K, Nakano N, Nishida H, Nakatani T, Fukushima M, Ide C (2014) Bone marrow-derived mononuclear cell transplantation in spinal cord injury patients by lumbar puncture. Restor Neurol Neurosci 32(4):473–482. https://doi.org/10.3233/RNN-130363

    Article  PubMed  Google Scholar 

  • Taguchi A, Wen Z, Myojin K, Yoshihara T, Nakagomi T, Nakayama D, Tanaka H, Soma T, Stern DM, Naritomi HJ (2007) Granulocyte colony-stimulating factor has a negative effect on stroke outcome in a murine model. Eur J Neurosci 26(1):126–133

    Article  PubMed  Google Scholar 

  • Taguchi A, Sakai C, Soma T, Kasahara Y, Stern DM, Kajimoto K, Ihara M, Daimon T, Yamahara K, Doi K, Kohara N, Nishimura H, Matsuyama T, Naritomi H, Sakai N, Nagatsuka K (2015a) Intravenous autologous bone marrow mononuclear cell transplantation for stroke: phase1/2a clinical trial in a homogeneous group of stroke patients. Stem Cells Dev 24(19):2207–2218. https://doi.org/10.1089/scd.2015.0160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taguchi A, Sakai C, Soma T, Kasahara Y, Stern DM, Kajimoto K, Ihara M, Daimon T, Yamahara K, Doi KJ (2015b) Intravenous autologous bone marrow mononuclear cell transplantation for stroke: phase1/2a clinical trial in a homogeneous group of stroke patients. Stem Cells Dev 24(19):2207–2218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takamura H, Terashima T, Mori K, Katagi M, Okano J, Suzuki Y, Imai S, Kojima H (2020) Bone-marrow-derived mononuclear cells relieve neuropathic pain after spinal nerve injury in mice. Mol Therapy 17:657–665

    CAS  Google Scholar 

  • Talbott EO, Malek AM, Lacomis D (2016) The epidemiology of amyotrophic lateral sclerosis. Handb Clin Neurol 138:225–238

    Article  CAS  PubMed  Google Scholar 

  • Tamburin S, Smania N, Saltuari L, Hoemberg V, Sandrini GJ (2019) New advances in neurorehabilitation. Front Neurol. https://doi.org/10.3389/fneur.2019.01090

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Maeta N (2020) Efficacy of autologous bone marrow mononuclear cell transplantation in dogs with chronic spinal cord injury. Open Vet J 10(2):206–215. https://doi.org/10.4314/ovj.v10i2.10

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan YL, Eng SP, Hafez P, AbdulKarim N, Law JX, Ng MH (2022) Mesenchymal stromal cell mitochondrial transfer as a cell rescue strategy in regenerative medicine: a review of evidence in preclinical models. Stem Cells Transl Med 11(8):814–827

    Article  PubMed  PubMed Central  Google Scholar 

  • Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y, Meyer EM, Morel L, Petersen BE, Scott EW (2002) Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416(6880):542–545

    Article  CAS  PubMed  Google Scholar 

  • Terry T, Chen Z, Dixon RA, Vanderslice P, Zoldhelyi P, Willerson JT, Liu QJ (2011) CD34+/M-cadherin+ bone marrow progenitor cells promote arteriogenesis in ischemic hindlimbs of ApoE−/− mice. PLoS ONE 6(6):e20673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thanh LN, Trung KN, Duy CV, Van DN, Hoang PN, Phuong ANT, Ngo MD, Thi TN, Viet AB (2019) Improvement in gross motor function and muscle tone in children with cerebral palsy related to neonatal icterus: an open-label, uncontrolled clinical trial. BMC Pediatr 19(1):1–8

    Article  Google Scholar 

  • Uccelli A, Wolff T, Valente P, Di Maggio N, Pellegrino M, Gürke L, Banfi A, Gianni-Barrera RJ (2019) Vascular endothelial growth factor biology for regenerative angiogenesis. Swiss Med Wkly. https://doi.org/10.4414/smw.2019.20011

    Article  PubMed  Google Scholar 

  • Uchida H, Niizuma K, Kushida Y, Wakao S, Tominaga T, Borlongan CV, Dezawa M (2017) Human Muse cells reconstruct neuronal circuitry in subacute lacunar stroke model. Stroke 48(2):428–435

    Article  PubMed  Google Scholar 

  • Urbich C, Heeschen C, Aicher A, Dernbach E, Zeiher AM, Dimmeler S (2003) Relevance of monocytic features for neovascularization capacity of circulating endothelial progenitor cells. Circulation 108(20):2511–2516

    Article  PubMed  Google Scholar 

  • Vahidy FS, Rahbar MH, Zhu H, Rowan PJ, Bambhroliya AB, Savitz SIJ (2016) Systematic review and meta-analysis of bone marrow–derived mononuclear cells in animal models of ischemic stroke. Stroke 47(6):1632–1639

    Article  PubMed  PubMed Central  Google Scholar 

  • Vahidy FS, Haque ME, Rahbar MH, Zhu H, Rowan P, Aisiku IP, Lee DA, Juneja HS, Alderman S, Barreto AD, Suarez JI, Bambhroliya A, Hasan KM, Kassam MR, Aronowski J, Gee A, Cox CS Jr, Grotta JC, Savitz SI (2019) Intravenous bone marrow mononuclear cells for acute ischemic stroke: safety, feasibility, and effect size from a phase I clinical trial. Stem Cells 37(11):1481–1491. https://doi.org/10.1002/stem.3080

    Article  CAS  PubMed  Google Scholar 

  • Vasconcelos-dos-Santos A, Rosado-de-Castro PH, de Souza SAL, da Costa SJ, Ramos AB, de Freitas GR, da Fonseca LMB, Gutfilen B, Mendez-Otero RJ (2012) Intravenous and intra-arterial administration of bone marrow mononuclear cells after focal cerebral ischemia: is there a difference in biodistribution and efficacy? Stem Cell Res 9(1):1–8

    Article  PubMed  Google Scholar 

  • Vassilopoulos G, Wang PR, Russell DW (2003) Transplanted bone marrow regenerates liver by cell fusion. Nature 422(6934):901–904

    Article  CAS  PubMed  Google Scholar 

  • Vendrame M, Cassady J, Newcomb J, Butler T, Pennypacker KR, Zigova T, Davis Sanberg C, Sanberg PR, Willing AEJS (2004) Infusion of human umbilical cord blood cells in a rat model of stroke dose-dependently rescues behavioral deficits and reduces infarct volume. Stroke 35(10):2390–2395

    Article  PubMed  Google Scholar 

  • Vendrame M, Gemma C, Pennypacker KR, Bickford PC, Sanberg CD, Sanberg PR, Willing AE (2006) Cord blood rescues stroke-induced changes in splenocyte phenotype and function. Exp Neurol 199(1):191–200

    Article  CAS  PubMed  Google Scholar 

  • Wagner D-C, Bojko M, Peters M, Lorenz M, Voigt C, Kaminski A, Hasenclever D, Scholz M, Kranz A, Weise GJE (2012) Impact of age on the efficacy of bone marrow mononuclear cell transplantation in experimental stroke. Exp Transl Stroke Med 4(1):1–8

    Article  Google Scholar 

  • Wang X, Willenbring H, Akkari Y, Torimaru Y, Foster M, Al-Dhalimy M, Lagasse E, Finegold M, Olson S, Grompe M (2003) Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422(6934):897–901

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Liu X, Lu H, Jiang C, Cui X, Yu L, Fu X, Li Q, Wang JJB (2015) CXCR4+ CD45− BMMNC subpopulation is superior to unfractionated BMMNCs for protection after ischemic stroke in mice. Brain Behav Immunity 45:98–108

    Article  CAS  Google Scholar 

  • Wang B, Lian Y-J, Su W-J, Peng W, Dong X, Liu L-L, Gong H, Zhang T, Jiang C-L, Wang Y-XJB (2018) HMGB1 mediates depressive behavior induced by chronic stress through activating the kynurenine pathway. Brain Behav Immunity 72:51–60

    Article  CAS  Google Scholar 

  • Wang TY, Park C, Zhang H, Rahimpour S, Murphy KR, Goodwin CR, Karikari IO, Than KD, Shaffrey CI, Foster N, Abd-El-Barr MM (2021) Management of acute traumatic spinal cord injury: a review of the literature. Front Surg 8:698736

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei W, Li L, Deng L, Wang Z-J, Dong J-J, Lyu X-Y, Jia T, Wang L, Wang H-X, Mao HJ (2020) Autologous bone marrow mononuclear cell transplantation therapy improved symptoms in patients with refractory diabetic sensorimotor polyneuropathy via the mechanisms of paracrine and immunomodulation: a controlled study. Cell Transpl 1:1. https://doi.org/10.1177/0963689720949258

    Article  Google Scholar 

  • WHO (2020) International perspectives on spinal cord injury

  • Wiklander OP, Nordin JZ, O’Loughlin A, Gustafsson Y, Corso G, Mäger I, Vader P, Lee Y, Sork H, Seow YJ (2015) Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J Extracell Ves 4(1):26316

    Article  Google Scholar 

  • Wilkins A, Kemp K, Ginty M, Hares K, Mallam E, Scolding NJ (2009) Human bone marrow-derived mesenchymal stem cells secrete brain-derived neurotrophic factor which promotes neuronal survival in vitro. Stem Cell Res 3(1):63–70

    Article  CAS  PubMed  Google Scholar 

  • Xiao Z, Tang F, Tang J, Yang H, Zhao Y, Chen B, Han S, Wang N, Li X, Cheng SJSCLS (2016) One-year clinical study of NeuroRegen scaffold implantation following scar resection in complete chronic spinal cord injury patients. Sci China Life Sci 59(7):647–655. https://doi.org/10.1007/s11427-016-5080-z

    Article  CAS  PubMed  Google Scholar 

  • Xin H, Li Y, Cui Y, Yang JJ, Zhang ZG, Chopp MJ (2013) Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab 33(11):1711–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu K, Lee JY, Kaneko Y, Tuazon JP, Vale F, van Loveren H, Borlongan CV (2019) Human stem cells transplanted into the rat stroke brain migrate to the spleen via lymphatic and inflammation pathways. Haematologica 104(5):1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita T, Kushida Y, Wakao S, Tadokoro K, Nomura E, Omote Y, Takemoto M, Hishikawa N, Ohta Y (2020) Therapeutic benefit of Muse cells in a mouse model of amyotrophic lateral sclerosis. Sci Rep 10(1):1–11

    Article  Google Scholar 

  • Yang B, Strong R, Sharma S, Brenneman M, Mallikarjunarao K, Xi X, Grotta JC, Aronowski J, Savitz SI (2011) Therapeutic time window and dose response of autologous bone marrow mononuclear cells for ischemic stroke. J Neurosci Res 89(6):833–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang B, Migliati E, Parsha K, Schaar K, Xi X, Aronowski J, Savitz SI (2013) Intra-arterial delivery is not superior to intravenous delivery of autologous bone marrow mononuclear cells in acute ischemic stroke. Stroke 44(12):3463–3472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang B, Parsha K, Schaar K, Xi X, Aronowski J, Savitz SI (2016) Various cell populations within the mononuclear fraction of bone marrow contribute to the beneficial effects of autologous bone marrow cell therapy in a rodent stroke model. Transl Stroke Res 7(4):322–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang B, Hamilton JA, Valenzuela KS, Bogaerts A, Xi X, Aronowski J, Mays RW, Savitz SI (2017) Multipotent adult progenitor cells enhance recovery after stroke by modulating the immune response from the spleen. Stem Cells 35(5):1290–1302

    Article  CAS  PubMed  Google Scholar 

  • Yoshihara T, Ohta M, Itokazu Y, Matsumoto N, Dezawa M, Suzuki Y, Taguchi A, Watanabe Y, Adachi Y, Ikehara S, Sugimoto H, Ide C (2007) Neuroprotective effect of bone marrow-derived mononuclear cells promoting functional recovery from spinal cord injury. J Neurotrauma 24(6):1026–1036. https://doi.org/10.1089/neu.2007.132R

    Article  PubMed  Google Scholar 

  • Yuan D, Zhao Y, Banks WA, Bullock KM, Haney M, Batrakova E, Kabanov AV (2017) Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain. Biomaterials 142:1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan Y, Sun J, You T, Shen W, Xu W, Dong Q, Cui M (2022) Extracellular vesicle-based therapeutics in neurological disorders. Pharmaceutics 14(12):2652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zadeh G, Guha A (2003) Angiogenesis in nervous system disorders. Neurosurgery 53(6):1362–1376

    Article  PubMed  Google Scholar 

  • Zahid MF, Murad MH, Litzow MR, Hogan WJ, Patnaik MS, Khorana A, Spyropoulos AC, Hashmi SKJ (2016) Venous thromboembolism following hematopoietic stem cell transplantation—a systematic review and meta-analysis. Ann Hematol 95(9):1457–1464

    Article  PubMed  Google Scholar 

  • Zhang B, Yin Y, Lai RC, Tan SS, Choo ABH, Lim SK (2014) Mesenchymal stem cells secrete immunologically active exosomes. Stem Cells Dev 23(11):1233–1244

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Chopp M, Meng Y, Katakowski M, Xin H, Mahmood A, Xiong YJ (2015) Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J Neurosurg 122(4):856–867

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Ding L, Shen T, Peng DJ (2019) HMGB1 involved in stress-induced depression and its neuroinflammatory priming role: a systematic review. General Psychiatry 32(4):e100084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao E, Xu H, Wang L, Kryczek I, Wu K, Hu Y, Wang G, Zou WJ (2012) Bone marrow and the control of immunity. Cell Mol Immunol 9(1):11–19

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Gan Y, Xu G, Yin G, Liu DJ (2020) MSCs-derived exosomes attenuate acute brain injury and inhibit microglial inflammation by reversing CysLT2R-ERK1/2 mediated microglia M1 polarization. Neurochem Res 45(5):1180–1190

    Article  CAS  PubMed  Google Scholar 

  • Zhuang Z, Liu M, Luo J, Zhang X, Dai Z, Zhang B, Chen H, Xue J, He M, Xu H, Liu A (2022) Exosomes derived from bone marrow mesenchymal stem cells attenuate neurological damage in traumatic brain injury by alleviating glutamate-mediated excitotoxicity. Exp Neurol 357:114182

    Article  CAS  PubMed  Google Scholar 

  • Zhuo Y, Li S-H, Chen M-S, Wu J, Kinkaid HYM, Fazel S, Weisel RD, Li R-K (2010) Aging impairs the angiogenic response to ischemic injury and the activity of implanted cells: combined consequences for cell therapy in older recipients. J Thorac Cardiovasc Surg 139(5):1286–1294

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Vingroup Scientist Research and Clinical Application Fund (Grant Number: PRO19.47) for supporting this work. All figures were created with Biorender.com.

Funding

This work is supported by the Vingroup Scientist Research and Clinical Application Fund (Grant Number: PRO19.47).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of the manuscript: QTN, LNT, VTH, TTKP, HK, DMH. Literature review: QTN, LNT, VTH, TTKP, DMH. Drafting or revision of the manuscript: QTN, LNT, VTH, TTKP, HK, DMH. All authors have approved the final article.

Corresponding author

Correspondence to Liem Nguyen Thanh.

Ethics declarations

Competing interests

The authors have no relevant financial or nonfinancial interests to disclose.

Ethical Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, Q.T., Thanh, L.N., Hoang, V.T. et al. Bone Marrow-Derived Mononuclear Cells in the Treatment of Neurological Diseases: Knowns and Unknowns. Cell Mol Neurobiol 43, 3211–3250 (2023). https://doi.org/10.1007/s10571-023-01377-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-023-01377-x

Keywords

Navigation