Skip to main content

Bone Marrow-Derived Mononuclear Cells

  • Chapter
  • First Online:
Cell Therapy Against Cerebral Stroke

Abstract

Stem cell-based approaches have recently attracted much attention owing to their potential therapeutic effects in patients with stroke. Bone marrow-derived mononuclear cells (MNCs), a source of stem cells, contain populations of lymphocytes, mesenchymal and hematopoietic stem cells, and hematopoietic and endothelial progenitor cells. They can be rapidly harvested from the bone marrow, separated, isolated, and then returned back into the animal or human. Experimental studies have demonstrated that the beneficial effects of MNCs may occur due to neuroprotection, modulation of inflammation and the immune response, endogenous neurogenesis, arteriogenesis, and angiogenesis. Several clinical studies have shown the safety and efficacy of MNCs in patients with ischemic stroke. Therefore, MNC treatment is a potentially attractive candidate to promote stroke recovery. Further studies are required to develop therapeutic strategies for improved protection against stroke and optimal transplantation protocols, such as cell dose, timing, delivery route, patient selection (age, gender, comorbidities, stroke subtype, and location), and combination therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abe K, Yamashita T, Takizawa S, Kuroda S, Kinouchi H, Kawahara N. Stem cell therapy for cerebral ischemia: from basic science to clinical applications. J Cereb Blood Flow Metab. 2012;32:1317–31. doi:10.1038/jcbfm.2011.187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kuroda S, Houkin K. Translational challenge for bone marrow stroma cell therapy after stroke. Front Neurol Neurosci. 2013;32:62–8. doi:10.1159/000346414.

    Article  PubMed  Google Scholar 

  3. Horie N, Hiu T, Nagata I. Stem cell transplantation enhances endogenous brain repair after experimental stroke. Neurol Med Chir (Tokyo). 2015;55:107–12. doi:10.2176/nmc.ra.2014-0271.

    Article  Google Scholar 

  4. Higashi Y, Kimura M, Hara K, Noma K, Jitsuiki D, Nakagawa K, et al. Autologous bone-marrow mononuclear cell implantation improves endothelium-dependent vasodilation in patients with limb ischemia. Circulation. 2004;109:1215–8. doi:10.1161/01.cir.0000121427.53291.78.

    Article  PubMed  Google Scholar 

  5. Iwase T, Nagaya N, Fujii T, Itoh T, Ishibashi-Ueda H, Yamagishi M, et al. Adrenomedullin enhances angiogenic potency of bone marrow transplantation in a rat model of hindlimb ischemia. Circulation. 2005;111:356–62. doi:10.1161/01.cir.0000153352.29335.b9.

    Article  CAS  PubMed  Google Scholar 

  6. Iihoshi S, Honmou O, Houkin K, Hashi K, Kocsis JD. A therapeutic window for intravenous administration of autologous bone marrow after cerebral ischemia in adult rats. Brain Res. 2004;1007(1–2):1–9. doi:10.1016/j.brainres.2003.09.084.

    Article  CAS  PubMed  Google Scholar 

  7. Kamiya N, Ueda M, Igarashi H, Nishiyama Y, Suda S, Inaba T, et al. Intra-arterial transplantation of bone marrow mononuclear cells immediately after reperfusion decreases brain injury after focal ischemia in rats. Life Sci. 2008;83:433–7. doi:10.1016/j.lfs.2008.07.018.

    Article  CAS  PubMed  Google Scholar 

  8. Yang B, Strong R, Sharma S, Brenneman M, Mallikarjunarao K, Xi X, et al. Therapeutic time window and dose response of autologous bone marrow mononuclear cells for ischemic stroke. J Neurosci Res. 2011;89:833–9. doi:10.1002/jnr.22614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Savitz SI, Misra V, Kasam M, Juneja H, Cox Jr CS, Alderman S, et al. Intravenous autologous bone marrow mononuclear cells for ischemic stroke. Ann Neurol. 2011;70:59–69. doi:10.1002/ana.22458.

    Article  PubMed  Google Scholar 

  10. Taguchi A, Sakai C, Soma T, Kasahara Y, Stern DM, Kajimoto K, et al. Intravenous autologous bone marrow mononuclear cell transplantation for stroke: phase1/2a clinical trial in a homogeneous group of stroke patients. Stem Cells Dev. 2015;24:2207–18. doi:10.1089/scd.2015.0160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kleinig TJ, Vink R. Suppression of inflammation in ischemic and hemorrhagic stroke: therapeutic options. Curr Opin Neurol. 2009;22:294–301.

    Article  PubMed  Google Scholar 

  12. Macrez R, Ali C, Toutirais O, Le Mauff B, Defer G, Dirnagl U, et al. Stroke and the immune system: from pathophysiology to new therapeutic strategies. Lancet Neurol. 2011;10:471–80. doi:10.1016/s1474-4422(11)70066-7.

    Article  CAS  PubMed  Google Scholar 

  13. Amantea D, Nappi G, Bernardi G, Bagetta G, Corasaniti MT. Post-ischemic brain damage: pathophysiology and role of inflammatory mediators. FEBS J. 2009;276:13–26. doi:10.1111/j.1742-4658.2008.06766.x.

    Article  CAS  PubMed  Google Scholar 

  14. Brenneman M, Sharma S, Harting M, Strong R, Cox Jr CS, Aronowski J, et al. Autologous bone marrow mononuclear cells enhance recovery after acute ischemic stroke in young and middle-aged rats. J Cereb Blood Flow Metab. 2010;30:140–9. doi:10.1038/jcbfm.2009.198.

    Article  PubMed  Google Scholar 

  15. Yang B, Xi X, Aronowski J, Savitz SI. Ischemic stroke may activate bone marrow mononuclear cells to enhance recovery after stroke. Stem Cells Dev. 2012;21:3332–40. doi:10.1089/scd.2012.0037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Suda S, Katsura KI, Saito M, Kamiya N, Katayama Y. Valproic acid enhances the effect of bone marrow-derived mononuclear cells in a rat ischemic stroke model. Brain Res. 2014;1565:74–81. doi:10.1016/j.brainres.2014.04.011.

    Article  CAS  PubMed  Google Scholar 

  17. Ramos AB, Vasconcelos-Dos-Santos A, Lopes de Souza SA, Rosado-de-Castro PH, Barbosa da Fonseca LM, Gutfilen B, et al. Bone-marrow mononuclear cells reduce neurodegeneration in hippocampal CA1 layer after transient global ischemia in rats. Brain Res. 2013;1522:1–11. doi:10.1016/j.brainres.2013.05.024.

    Article  CAS  PubMed  Google Scholar 

  18. Ajmo Jr CT, Vernon DO, Collier L, Hall AA, Garbuzova-Davis S, Willing A, et al. The spleen contributes to stroke-induced neurodegeneration. J Neurosci Res. 2008;86:2227–34. doi:10.1002/jnr.21661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Offner H, Vandenbark AA, Hurn PD. Effect of experimental stroke on peripheral immunity: CNS ischemia induces profound immunosuppression. Neuroscience. 2009;158(3):1098–111. doi:10.1016/j.neuroscience.2008.05.033.

    Article  CAS  PubMed  Google Scholar 

  20. Sahota P, Vahidy F, Nguyen C, Bui TT, Yang B, Parsha K, et al. Changes in spleen size in patients with acute ischemic stroke: a pilot observational study. Int J Stroke. 2013;8:60–7. doi:10.1111/ijs.12022.

    Article  PubMed  Google Scholar 

  21. Suda S, Yang B, Schaar K, Xi X, Pido J, Parsha K, et al. Autologous bone marrow mononuclear cells exert broad effects on short- and long-term biological and functional outcomes in rodents with intracerebral hemorrhage. Stem Cells Dev. 2015;24(23):2756–66. doi:10.1089/scd.2015.0107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Posel C, Scheibe J, Kranz A, Bothe V, Quente E, Frohlich W, et al. Bone marrow cell transplantation time-dependently abolishes efficacy of granulocyte colony-stimulating factor after stroke in hypertensive rats. Stroke. 2014;45:2431–7. doi:10.1161/strokeaha.113.004460.

    Article  PubMed  Google Scholar 

  23. Lee ST, Chu K, Jung KH, Kim SJ, Kim DH, Kang KM, et al. Anti-inflammatory mechanism of intravascular neural stem cell transplantation in haemorrhagic stroke. Brain. 2008;131:616–29. doi:10.1093/brain/awm306.

    Article  PubMed  Google Scholar 

  24. Borlongan CV, Lind JG, Dillon-Carter O, Yu G, Hadman M, Cheng C, et al. Bone marrow grafts restore cerebral blood flow and blood brain barrier in stroke rats. Brain Res. 2004;1010:108–16. doi:10.1016/j.brainres.2004.02.072.

    Article  CAS  PubMed  Google Scholar 

  25. Horie N, Pereira MP, Niizuma K, Sun G, Keren-Gill H, Encarnacion A, et al. Transplanted stem cell-secreted vascular endothelial growth factor effects poststroke recovery, inflammation, and vascular repair. Stem Cells. 2011;29:274–85. doi:10.1002/stem.584.

    Article  CAS  PubMed  Google Scholar 

  26. Cui K, Ma X, Yu L, Jiang C, Fu C, Fu X, et al. Autologous bone marrow mononuclear cell transplantation delays progression of carotid atherosclerosis in rabbits. Mol Neurobiol. 2015. doi:10.1007/s12035-015-9347-3.

    PubMed Central  Google Scholar 

  27. Raval Z, Losordo DW. Cell therapy of peripheral arterial disease: from experimental findings to clinical trials. Circ Res. 2013;112:1288–302. doi:10.1161/circresaha.113.300565.

    Article  CAS  PubMed  Google Scholar 

  28. Sugiyama Y, Yagita Y, Oyama N, Terasaki Y, Omura-Matsuoka E, Sasaki T, et al. Granulocyte colony-stimulating factor enhances arteriogenesis and ameliorates cerebral damage in a mouse model of ischemic stroke. Stroke. 2011;42:770–5. doi:10.1161/strokeaha.110.597799.

    Article  CAS  PubMed  Google Scholar 

  29. Buschmann IR, Busch HJ, Mies G, Hossmann KA. Therapeutic induction of arteriogenesis in hypoperfused rat brain via granulocyte-macrophage colony-stimulating factor. Circulation. 2003;108:610–5. doi:10.1161/01.cir.0000074209.17561.99.

    Article  CAS  PubMed  Google Scholar 

  30. Liebeskind DS. Collateral perfusion: time for novel paradigms in cerebral ischemia. Int J Stroke. 2012;7:309–10. doi:10.1111/j.1747-4949.2012.00818.x.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Terry T, Chen Z, Dixon RA, Vanderslice P, Zoldhelyi P, Willerson JT, et al. CD34(+)/M-cadherin(+) bone marrow progenitor cells promote arteriogenesis in ischemic hindlimbs of ApoE(−)/(−) mice. PLoS ONE. 2011;6, e20673. doi:10.1371/journal.pone.0020673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ruiz-Salmeron R, de la Cuesta-Diaz A, Constantino-Bermejo M, Perez-Camacho I, Marcos-Sanchez F, Hmadcha A, et al. Angiographic demonstration of neoangiogenesis after intra-arterial infusion of autologous bone marrow mononuclear cells in diabetic patients with critical limb ischemia. Cell Transplant. 2011;20:1629–39. doi:10.3727/096368910x0177.

    Article  PubMed  Google Scholar 

  33. Wang J, Yu L, Jiang C, Chen M, Ou C, Wang J. Bone marrow mononuclear cells exert long-term neuroprotection in a rat model of ischemic stroke by promoting arteriogenesis and angiogenesis. Brain Behav Immun. 2013;34:56–66. doi:10.1016/j.bbi.2013.07.010.

    Article  PubMed  Google Scholar 

  34. Fujita Y, Ihara M, Ushiki T, Hirai H, Kizaka-Kondoh S, Hiraoka M, et al. Early protective effect of bone marrow mononuclear cells against ischemic white matter damage through augmentation of cerebral blood flow. Stroke. 2010;41:2938–43. doi:10.1161/strokeaha.110.596379.

    Article  PubMed  Google Scholar 

  35. Chen J, Zhang ZG, Li Y, Wang L, Xu YX, Gautam SC, et al. Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res. 2003;92:692–9. doi:10.1161/01.res.0000063425.51108.8d.

    Article  CAS  PubMed  Google Scholar 

  36. Wang J, Liu X, Lu H, Jiang C, Cui X, Yu L, et al. CXCR4(+)CD45(−) BMMNC subpopulation is superior to unfractionated BMMNCs for protection after ischemic stroke in mice. Brain Behav Immun. 2015;45:98–108. doi:10.1016/j.bbi.2014.12.015.

    Article  CAS  PubMed  Google Scholar 

  37. Shen LH, Li Y, Chopp M. Astrocytic endogenous glial cell derived neurotrophic factor production is enhanced by bone marrow stromal cell transplantation in the ischemic boundary zone after stroke in adult rats. Glia. 2010;58:1074–81. doi:10.1002/glia.20988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wiltrout C, Lang B, Yan Y, Dempsey RJ, Vemuganti R. Repairing brain after stroke: a review on post-ischemic neurogenesis. Neurochem Int. 2007;50:1028–41. doi:10.1016/j.neuint.2007.04.011.

    Article  CAS  PubMed  Google Scholar 

  39. Thored P, Arvidsson A, Cacci E, Ahlenius H, Kallur T, Darsalia V, et al. Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells. 2006;24:739–47. doi:10.1634/stemcells.2005-0281.

    Article  CAS  PubMed  Google Scholar 

  40. Hermann DM, Peruzzotti-Jametti L, Schlechter J, Bernstock JD, Doeppner TR, Pluchino S. Neural precursor cells in the ischemic brain – integration, cellular crosstalk, and consequences for stroke recovery. Front Cell Neurosci. 2014;8:291. doi:10.3389/fncel.2014.00291.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Nakano-Doi A, Nakagomi T, Fujikawa M, Nakagomi N, Kubo S, Lu S, et al. Bone marrow mononuclear cells promote proliferation of endogenous neural stem cells through vascular niches after cerebral infarction. Stem Cells. 2010;28:1292–302. doi:10.1002/stem.454.

    CAS  PubMed  Google Scholar 

  42. Shichinohe H, Kuroda S, Maruichi K, Osanai T, Sugiyama T, Chiba Y, et al. Bone marrow stromal cells and bone marrow-derived mononuclear cells: which are suitable as cell source of transplantation for mice infarct brain? Neuropathology. 2010;30:113–22. doi:10.1111/j.1440-1789.2009.01050.x.

    Article  PubMed  Google Scholar 

  43. Li Y, Mao WW, Zhang CG, Wan L, Jing CH, Hua XM, et al. Neuroprotective effects of intravenous transplantation of bone marrow mononuclear cells from 5-fluorouracil pre-treated rats on ischemic stroke. Behav Brain Res. 2015. doi:10.1016/j.bbr.2015.07.048.

    Google Scholar 

  44. Yang B, Migliati E, Parsha K, Schaar K, Xi X, Aronowski J, et al. Intra-arterial delivery is not superior to intravenous delivery of autologous bone marrow mononuclear cells in acute ischemic stroke. Stroke. 2013;44:3463–72. doi:10.1161/strokeaha.111.000821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Giraldi-Guimardes A, Rezende-Lima M, Bruno FP, Mendez-Otero R. Treatment with bone marrow mononuclear cells induces functional recovery and decreases neurodegeneration after sensorimotor cortical ischemia in rats. Brain Res. 2009;1266:108–20. doi:10.1016/j.brainres.2009.01.062.

    Article  PubMed  Google Scholar 

  46. Fisher M, Feuerstein G, Howells DW, Hurn PD, Kent TA, Savitz SI, et al. Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke. 2009;40:2244–50. doi:10.1161/strokeaha.108.541128.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lu JKH, Anzalone CR, LaPolt PS. Relation of neuroendocrine function to reproductive decline during aging in the female rat. Neurobiol Aging. 1994;15:541–4. doi:10.1016/0197-4580(94)90094-9.

    Article  CAS  PubMed  Google Scholar 

  48. Manwani B, Liu F, Xu Y, Persky R, Li J, McCullough LD. Functional recovery in aging mice after experimental stroke. Brain Behav Immun. 2011;25:1689–700. doi:10.1016/j.bbi.2011.06.015.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kimura K, Sakamoto Y, Iguchi Y, Shibazaki K, Aoki J, Sakai K, et al. Admission hyperglycemia and serial infarct volume after t-PA therapy in patients with and without early recanalization. J Neurol Sci. 2011;307:55–9. doi:10.1016/j.jns.2011.05.017.

    Article  CAS  PubMed  Google Scholar 

  50. Moller K, Posel C, Kranz A, Schulz I, Scheibe J, Didwischus N, et al. Arterial hypertension aggravates innate immune responses after experimental stroke. Front Cell Neurosci. 2015;9:461. doi:10.3389/fncel.2015.00461.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Suda S, Katsumata T, Okubo S, Kanamaru T, Suzuki K, Watanabe Y, et al. Low serum n-3 polyunsaturated fatty acid/n-6 polyunsaturated fatty acid ratio predicts neurological deterioration in Japanese patients with acute ischemic stroke. Cerebrovasc Dis. 2013;36:388–93. doi:10.1159/000355683.

    Article  CAS  PubMed  Google Scholar 

  52. Suda S, Ueda M, Nito C, Nishiyama Y, Okubo S, Abe A, et al. Valproic acid ameliorates ischemic brain injury in hyperglycemic rats with permanent middle cerebral occlusion. Brain Res. 2015;1606:1–8. doi:10.1016/j.brainres.2015.02.013.

    Article  CAS  PubMed  Google Scholar 

  53. Hill MD, Kent DM, Hinchey J, Rowley H, Buchan AM, Wechsler LR, et al. Sex-based differences in the effect of intra-arterial treatment of stroke: analysis of the PROACT-2 study. Stroke. 2006;37:2322–5. doi:10.1161/01.str.0000237060.21472.47.

    Article  CAS  PubMed  Google Scholar 

  54. Coelho BP, Giraldi-Guimaraes A. Effect of age and gender on recovery after stroke in rats treated with bone marrow mononuclear cells. Neurosci Res. 2014;88:67–73. doi:10.1016/j.neures.2014.08.007.

    Article  PubMed  Google Scholar 

  55. Wagner DC, Bojko M, Peters M, Lorenz M, Voigt C, Kaminski A, et al. Impact of age on the efficacy of bone marrow mononuclear cell transplantation in experimental stroke. Exp Transl Stroke Med. 2012;4:17. doi:10.1186/2040-7378-4-17.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Prasad K, Sharma A, Garg A, Mohanty S, Bhatnagar S, Johri S, et al. Intravenous autologous bone marrow mononuclear stem cell therapy for ischemic stroke: a multicentric, randomized trial. Stroke. 2014;45:3618–24. doi:10.1161/strokeaha.114.007028.

    Article  CAS  PubMed  Google Scholar 

  57. Seners P, Turc G, Oppenheim C, Baron JC. Incidence, causes and predictors of neurological deterioration occurring within 24 h following acute ischaemic stroke: a systematic review with pathophysiological implications. J Neurol Neurosurg Psychiatry. 2015;86:87–94. doi:10.1136/jnnp-2014-308327.

    Article  PubMed  Google Scholar 

  58. Guzman R, De Los Angeles A, Cheshier S, Choi R, Hoang S, Liauw J, et al. Intracarotid injection of fluorescence activated cell-sorted CD49d-positive neural stem cells improves targeted cell delivery and behavior after stroke in a mouse stroke model. Stroke. 2008;39:1300–6. doi:10.1161/strokeaha.107.500470.

    Article  PubMed  Google Scholar 

  59. Chen J, Li Y, Wang L, Lu M, Chopp M. Caspase inhibition by Z-VAD increases the survival of grafted bone marrow cells and improves functional outcome after MCAo in rats. J Neurol Sci. 2002;199:17–24.

    Article  CAS  PubMed  Google Scholar 

  60. Boninger ML, Wechsler LR, Stein J. Robotics, stem cells, and brain-computer interfaces in rehabilitation and recovery from stroke: updates and advances. Am J Phys Med Rehabil. 2014;93:S145–54. doi:10.1097/phm.0000000000000128.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Shimohata T, Zhao H, Steinberg GK. Epsilon PKC may contribute to the protective effect of hypothermia in a rat focal cerebral ischemia model. Stroke. 2007;38:375–80. doi:10.1161/01.STR.0000254616.78387.ee.

    Article  PubMed  Google Scholar 

  62. Nito C, Kamiya T, Ueda M, Arii T, Katayama Y. Mild hypothermia enhances the neuroprotective effects of FK506 and expands its therapeutic window following transient focal ischemia in rats. Brain Res. 2004;1008:179–85. doi:10.1016/j.brainres.2004.02.031.

    Article  CAS  PubMed  Google Scholar 

  63. Bedi SS, Walker PA, Shah SK, Jimenez F, Thomas CP, Smith P, Hetz RA, Xue H, Pati S, Dash PK, Cox Jr CS. Autologous bone marrow mononuclear cells therapy attenuates activated microglial/macrophage response and improves spatial learning after traumatic brain injury. J Trauma Acute Care Surg. 2013;75(3):410–16. doi:10.1097/TA.0b013e31829617c6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I would like to thank Dr. Kazumi Kimura and Chikako Nito for critical feedback on the manuscript. This manuscript was supported by a grant from the Nippon Medical School Alumni Association.

Conflicts of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Suda M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Suda, S. (2017). Bone Marrow-Derived Mononuclear Cells. In: Houkin, K., Abe, K., Kuroda, S. (eds) Cell Therapy Against Cerebral Stroke. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56059-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56059-3_1

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56057-9

  • Online ISBN: 978-4-431-56059-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics