Skip to main content
Log in

Concentration driven cocrystallisation and percolation in all-cellulose nanocomposites

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

All-cellulose nanocomposites reinforced by cellulose nanocrystals (CNC) were produced using a solvent consisting of 1-butyl-3-methylimidazolium chloride and dimethyl sulfoxide. Microcrystalline cellulose (MCC) was pre-dissolved at high temperature in the solvent. Freeze-dried CNC were then added to the slurry at room temperature, thereby avoiding complete CNC dissolution. Solid all-cellulose composite films were obtained by film casting, solvent exchange and drying. The MCC to CNC ratio was kept constant while the solvent content was incremented. The short-range and long-range cellulose–cellulose interactions in the solid materials were respectively assessed by Fourier-transform infrared spectroscopy and X-ray diffraction. The CNC used in this work contained both cellulose I and cellulose II. The cellulose concentration in the mixture drastically changed the overall crystallinity as well as the cellulose I to cellulose II ratio in the ACC. Cellulose II was formed by recrystallisation of the dissolved fractions. These fractions include the pre-dissolved MCC and the cellulose II portion of the CNC. Cocrystallisation with the cellulose I CNC acting as a template was also evidenced. This phenomenon was controlled by the initial solvent content. The correlation between the hygromechanical properties and the nanostructure features of the ACC was investigated by humidity-controlled dynamic mechanical analysis (RH-DMA). The introduction of the cocrystallisation and percolation concepts provided a thorough explanation for the humidity dependency of the storage modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscopy

TEM:

Transmission electron microscopy

FTIR:

Fourier-transform infrared spectroscopy

WAXD:

Wide-angle X-ray diffraction

RH-DMA:

Humidity-controlled dynamic mechanical analysis

BmimCl:

1-Butyl-3-methylimidazolium chloride

MCC:

Microcrystalline cellulose

CNC:

Cellulose nanocrystals

DMSO:

Dimethyl sulfoxide

ACC:

All-cellulose composites

RCF:

Regenerated cellulose film

LOI:

Lateral order index

TCI:

Total crystallinity index

References

  • Altaner CM, Horikawa Y, Sugiyama J, Jarvis MC (2014) Cellulose Iβ investigated by IR-spectroscopy at low temperatures. Cellulose 21:3171–3179. doi:10.1007/s10570-014-0360-x

    Article  CAS  Google Scholar 

  • Boerstoel H (2006) Liquid crystalline solutions of cellulose in phosphoric acid for preparing cellulose yarns. University of Groningen. http://www.narcis.nl/publication/RecordID/oai:ub.rug.nl:dbi%2F43da2b779a30f

  • Boluk Y, Lahiji R, Zhao L, McDermott MT (2011) Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloids Surf Physicochem Eng Asp 377:297–303. doi:10.1016/j.colsurfa.2011.01.003

    Article  CAS  Google Scholar 

  • Bras J (2004) Etudes des propriétés barrières de dérivés cellulosiques: application au gel de cellulose du papier sulfurisé. Toulouse, INPT

    Google Scholar 

  • Buleon A, Chanzy H (1980) Single crystals of cellulose IVII: preparation and properties. J Polym Sci Polym Phys Ed 18:1209–1217. doi:10.1002/pol.1980.180180604

    Article  CAS  Google Scholar 

  • Buleon A, Chanzy H, Roche E (1976) Epitaxial crystallization of cellulose II on valonia cellulose. J Polym Sci Polym Phys Ed 14:1913–1916. doi:10.1002/pol.1976.180141016

    Article  CAS  Google Scholar 

  • Buleon A, Chanzy H, Roche E (1977) Shish kebab-like structures of cellulose. J Polym Sci Polym Lett Ed 15:265–270. doi:10.1002/pol.1977.130150502

    Article  CAS  Google Scholar 

  • Capadona JR, Shanmuganathan K, Tyler DJ et al (2008) Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science 319:1370–1374. doi:10.1126/science.1153307

    Article  CAS  Google Scholar 

  • Carillo F, Colom X, Suñol JJ, Saurina J (2004) Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibres. Eur Polym J 40:2229–2234

    Article  CAS  Google Scholar 

  • Cartier N, Escaffre P, Mathevet F, et al. (1994) Structure and recycling of vegetable parchment. Tappi J 77:95–100

  • Courtenay W (1878) Improvement in processes of treating vegetable fibrous substances. US 217,448 A

  • Duchemin B (2008) Structure, property and processing relationships of all-cellulose composites. Ph.D. Thesis, University of Canterbury

  • Duchemin B, Newman R, Staiger M (2007) Phase transformations in microcrystalline cellulose due to partial dissolution. Cellulose 14:311–320

    Article  CAS  Google Scholar 

  • Duchemin BJC, Mathew AP, Oksman K (2009a) All-cellulose composites by partial dissolution in the ionic liquid 1-butyl-3-methylimidazolium chloride. Compos Part Appl Sci Manuf 40:2031–2037. doi:10.1016/j.compositesa.2009.09.013

    Article  CAS  Google Scholar 

  • Duchemin BJC, Newman RH, Staiger MP (2009b) Structure–property relationship of all-cellulose composites. Compos Sci Technol 69:1225–1230

    Article  CAS  Google Scholar 

  • Duchemin BJC, Staiger MP, Tucker N, Newman RH (2010) Aerocellulose based on all-cellulose composites. J Appl Polym Sci 115:216–221. doi:10.1002/app.31111

    Article  CAS  Google Scholar 

  • Duchemin B, Thuault A, Vicente A et al (2012) Ultrastructure of cellulose crystallites in flax textile fibres. Cellulose 19:1837–1854. doi:10.1007/s10570-012-9786-1

    Article  CAS  Google Scholar 

  • Fernandes AN, Thomas LH, Altaner CM et al (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci USA 108:E1195–E1203. doi:10.1073/pnas.1108942108

    Article  Google Scholar 

  • Fink H-P, Ganster J, Lehmann A (2014) Progress in cellulose shaping: 20 years industrial case studies at Fraunhofer IAP. Cellulose 21:31–51. doi:10.1007/s10570-013-0137-7

    Article  Google Scholar 

  • Flandin L, Cavaillé JY, Bidan G, Brechet Y (2000) New nanocomposite materials made of an insulating matrix and conducting fillers: processing and properties. Polym Compos 21:165–174. doi:10.1002/pc.10174

    Article  CAS  Google Scholar 

  • Gindl W, Keckes J (2005) All-cellulose nanocomposite. Polymer 46:10221–10225

    Article  CAS  Google Scholar 

  • Goldberg RN, Schliesser J, Mittal A et al (2015) A thermodynamic investigation of the cellulose allomorphs: cellulose (am), cellulose Iβ (cr), cellulose II (cr), and cellulose III (cr). J Chem Thermodyn 81:184–226. doi:10.1016/j.jct.2014.09.006

    Article  CAS  Google Scholar 

  • Graenacher C (1934) Cellulose solution. US 1943176 A

  • Haverhals LM, Reichert WM, Long HCD, Trulove PC (2010) Natural fiber welding. Macromol Mater Eng 295:425–430. doi:10.1002/mame.201000005

    Article  CAS  Google Scholar 

  • Haverhals LM, Sulpizio HM, Fayos ZA et al (2012) Process variables that control natural fiber welding: time, temperature, and amount of ionic liquid. Cellulose 19:13–22. doi:10.1007/s10570-011-9605-0

    Article  CAS  Google Scholar 

  • He X, Xiao Q, Lu C et al (2014) Uniaxially aligned electrospun all-cellulose nanocomposite nanofibers reinforced with cellulose nanocrystals: scaffold for tissue engineering. Biomacromolecules 15:618–627. doi:10.1021/bm401656a

    Article  CAS  Google Scholar 

  • Huber T, Müssig J, Curnow O et al (2012) A critical review of all-cellulose composites. J Mater Sci 47:1171–1186. doi:10.1007/s10853-011-5774-3

    Article  CAS  Google Scholar 

  • Hurtubise FG, Krassig H (1960) Classification of fine structural characteristics in cellulose by infared spectroscopy. Use of potassium bromide pellet technique. Anal Chem 32:177–181

    Article  CAS  Google Scholar 

  • Imai T, Sugiyama J (1998) Nanodomains of Iα and Iβ cellulose in algal microfibrils. Macromolecules 31:6275–6279

    Article  CAS  Google Scholar 

  • Isogai A (1989) Solid-state CP/MAS 13C NMR study of cellulose polymorphs. Macromolecules 22:3168–3172

    Article  CAS  Google Scholar 

  • Kalka S, Huber T, Steinberg J et al (2014) Biodegradability of all-cellulose composite laminates. Compos Part Appl Sci Manuf 59:37–44. doi:10.1016/j.compositesa.2013.12.012

    Article  CAS  Google Scholar 

  • Koenig JL (1999) Spectroscopy of polymers. Elsevier, Amsterdam

    Google Scholar 

  • Kondo T, Sawatari C (1996) A fourier transform infra-red spectroscopic analysis of the character of hydrogen bonds in amorphous cellulose. Polymer 37:393–399

    Article  CAS  Google Scholar 

  • Liebert TF (2010) Cellulose solvents-remarkable history, bright future. In: Liebert T, Heinz TJ, Edgar KJ (eds) Cellulose solvents: for analysis, shaping and chemical modification, ACS symposium series, vol 1033. American Chemical Society, Washington, DC, pp 3–54

  • Lu A, Hemraz U, Khalili Z, Boluk Y (2014) Unique viscoelastic behaviors of colloidal nanocrystalline cellulose aqueous suspensions. Cellulose 21:1239–1250. doi:10.1007/s10570-014-0173-y

    Article  CAS  Google Scholar 

  • Ma H, Zhou B, Li H-S et al (2011) Green composite films composed of nanocrystalline cellulose and a cellulose matrix regenerated from functionalized ionic liquid solution. Carbohydr Polym 84:383–389. doi:10.1016/j.carbpol.2010.11.050

    Article  CAS  Google Scholar 

  • Magalhães WLE, Cao X, Lucia LA (2009) Cellulose nanocrystals/cellulose core-in-shell nanocomposite assemblies. Langmuir 25:13250–13257. doi:10.1021/la901928j

    Article  CAS  Google Scholar 

  • Manabe S, Iwata M, Kamide K (1986) Dynamic mechanical absorptions observed for regenerated cellulose solids in the temperature range from 280 to 600 K. Polym J 18:1–14

    Article  CAS  Google Scholar 

  • Maréchal Y, Chanzy H (2000) The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry. J Mol Struct 523:183–196

    Article  Google Scholar 

  • Mazeau K (2015) The hygroscopic power of amorphous cellulose: a modeling study. Carbohydr Polym 117:585–591. doi:10.1016/j.carbpol.2014.09.095

    Article  CAS  Google Scholar 

  • Nelson ML, O’Connor RT (1964a) Relation of certain infrared bands to cellulose crystallinity and crystal lattice types. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II. J Appl Polym Sci 8:1325–1341

    Article  CAS  Google Scholar 

  • Nelson ML, O’Connor RT (1964b) Relation of certain infrared bands to cellulose crystallinity and crystal lattice types. Part I. Spectra of lattice types I, II, III and of amorphous cellulose. J Appl Polym Sci 8:1311–1324

    Article  CAS  Google Scholar 

  • Newman RH (2004) Carbon-13 NMR evidence for cocrystallisation of cellulose as a mechanism for hornification of bleached kraft pulp. Cellulose 11:45–52. doi:10.1023/B:CELL.0000014768.28924.0c

    Article  CAS  Google Scholar 

  • Newman RH (2008) Simulation of X-ray diffractograms relevant to the purported polymorphs cellulose IVI and IVII. Cellulose 15:769–778. doi:10.1007/s10570-008-9225-5

    Article  CAS  Google Scholar 

  • Nishino T, Arimoto N (2005) All-cellulose composite by partial dissolving of fibers. Stockholm

  • Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37:7683–7687

    Article  CAS  Google Scholar 

  • Nissan AH, Sternstein SS (1962) Cellulose as a viscoelastic material. Pure Appl Chem 5:131–146

    Article  CAS  Google Scholar 

  • O’Connor RT, DuPré EF, Mitcham D (1958) Applications of infrared absorption spectroscopy to investigations of cotton and modified cottons. Text Res J 28:382–392. doi:10.1177/004051755802800503

    Article  Google Scholar 

  • Oh SY, Yoo DI, Shin Y et al (2005a) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391

    Article  CAS  Google Scholar 

  • Oh SY, Yoo DI, Shin Y, Seo G (2005b) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res 340:417–428

    Article  CAS  Google Scholar 

  • Olszewska AM, Kontturi E, Laine J, Österberg M (2013) All-cellulose multilayers: long nanofibrils assembled with short nanocrystals. Cellulose 20:1777–1789. doi:10.1007/s10570-013-9949-8

    Article  CAS  Google Scholar 

  • Ouajai S, Shanks RA (2009) Preparation, structure and mechanical properties of all-hemp cellulose biocomposites. Compos Sci Technol 69:2119–2126. doi:10.1016/j.compscitech.2009.05.005

    Article  CAS  Google Scholar 

  • Pinkert A, Marsh KN, Pang S, Staiger MP (2010) Ionic liquids and their interaction with cellulose. Chem Inform. doi:10.1002/chin.201017232

    Google Scholar 

  • Pullawan T, Wilkinson AN, Eichhorn SJ (2010) Discrimination of matrix–fibre interactions in all-cellulose nanocomposites. Compos Sci Technol 70:2325–2330. doi:10.1016/j.compscitech.2010.09.013

    Article  CAS  Google Scholar 

  • Pullawan T, Wilkinson AN, Eichhorn SJ (2012) Influence of magnetic field alignment of cellulose whiskers on the mechanics of all-cellulose nanocomposites. Biomacromolecules 13:2528–2536

    Article  CAS  Google Scholar 

  • Pullawan T, Wilkinson AN, Eichhorn SJ (2013) Orientation and deformation of wet-stretched all-cellulose nanocomposites. J Mater Sci 48:7847–7855. doi:10.1007/s10853-013-7404-8

    Article  CAS  Google Scholar 

  • Pullawan T, Wilkinson AN, Zhang LN, Eichhorn SJ (2014) Deformation micromechanics of all-cellulose nanocomposites: comparing matrix and reinforcing components. Carbohydr Polym 100:31–39. doi:10.1016/j.carbpol.2012.12.066

    Article  CAS  Google Scholar 

  • Qi H, Cai J, Zhang L, Kuga S (2009) Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution. Biomacromolecules 10:1597–1602. doi:10.1021/bm9001975

    Article  CAS  Google Scholar 

  • Rinaldi R (2011) Instantaneous dissolution of cellulose in organic electrolyte solutions. Chem Commun 47:511. doi:10.1039/c0cc02421j

    Article  CAS  Google Scholar 

  • Röder T, Moosbauer J, Kliba G et al (2009) Comparative characterisation of man-made regenerated cellulose fibres. Lenzing Ber 87:98–105

    Google Scholar 

  • Salmén NL, Back EL (1977) The influence of water on the glass transition temperature of cellulose. Tappi 60:137–140

    Google Scholar 

  • Schmidt A (1871) Improvement in treating paper and vegetable fibrous substances. US 113,454. Pittsburg, PA

  • Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36:23–40

    Article  CAS  Google Scholar 

  • Sèbe G, Ham-Pichavant F, Ibarboure E et al (2012) Supramolecular structure characterization of cellulose II nanowhiskers produced by acid hydrolysis of cellulose I substrates. Biomacromolecules 13:570–578. doi:10.1021/bm201777j

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Smole MS, Peršin Z, Kreže T et al (2003) X-ray study of pre-treated regenerated cellulose fibres. Mat Res Innov 7:275–282

    Article  CAS  Google Scholar 

  • Song H, Niu Y, Yu J et al (2013) Preparation and morphology of different types of cellulose spherulites from concentrated cellulose ionic liquid solutions. Soft Matter 9:3013–3020. doi:10.1039/C3SM27320B

    Article  CAS  Google Scholar 

  • Soykeabkaew N, Arimoto N, Nishino T, Peijs T (2008) All-cellulose composites by surface selective dissolution of aligned ligno-cellulosic fibres. Compos Sci Technol 68:2201–2207

    Article  CAS  Google Scholar 

  • Soykeabkaew N, Nishino T, Peijs T (2009a) All-cellulose composites of regenerated cellulose fibres by surface selective dissolution. Compos Part Appl Sci Manuf 40:321–328

    Article  CAS  Google Scholar 

  • Soykeabkaew N, Sian C, Gea S et al (2009b) All-cellulose nanocomposites by surface selective dissolution of bacterial. Cellulose 16:435–444. doi:10.1007/s10570-009-9285-1

    Article  CAS  Google Scholar 

  • Sukhov DA, Derkacheva O, Kazanskii SA (1998) Allomorphism of native celluloses by FTIR spectroscopy. In: 5th European workshop on lignocellulosics and pulp. Advances in lignocellulosics chemistry for ecologically friendly pulping and bleaching technologies. Aveiro, Portugal, pp 5–66

  • Sundberg J, Toriz G, Gatenholm P (2013) Moisture induced plasticity of amorphous cellulose films from ionic liquid. Polymer 54:6555–6560. doi:10.1016/j.polymer.2013.10.012

    Article  CAS  Google Scholar 

  • Takahashi M, Ookubo M (1993) CP/MAS 13C NMR and WAXS studies on the effects of starting cellulose materials on transition between cellulose polymorphs. Kobunshi Ronbunshu 51:107–113

    Article  Google Scholar 

  • Takayanagi M, Uemura S, Minami S (1964) Application of equivalent model method to dynamic rheo-optical properties of crystalline polymer. J Polym Sci Part C Polym Symp 5:113–122. doi:10.1002/polc.5070050111

    Article  Google Scholar 

  • Wang Y, Chen L (2010) Impacts of nanowhisker on formation kinetics and properties of all-cellulose composite gels. Carbohydr Polym 83:1937–1946. doi:10.1016/j.carbpol.2010.10.071

    Article  CAS  Google Scholar 

  • Wang S, Cheng Q (2009) A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication, Part 1: process optimization. J Appl Polym Sci 113:1270–1275. doi:10.1002/app.30072

    Article  CAS  Google Scholar 

  • Wang L, Gao L, Cheng B et al (2014) Rheological behaviors of cellulose in 1-ethyl-3-methylimidazolium chloride/dimethyl sulfoxide. Carbohydr Polym 110:292–297. doi:10.1016/j.carbpol.2014.03.091

    Article  CAS  Google Scholar 

  • Zhou S, Tashiro K, Hongo T et al (2001) Influence of water on structure and mechanical properties of regenerated cellulose studied by an organized combination of infrared spectra, X-ray diffraction, and dynamic viscoelastic data measured as functions of temperature and humidity. Macromolecules 34:1274–1280. doi:10.1021/ma001507x

    Article  CAS  Google Scholar 

  • Zhu S, Wu Y, Chen Q et al (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8:325–327

    Article  CAS  Google Scholar 

  • Zugenmaier P (2001) Conformation and packing of various crystalline cellulose fibers. Prog Polym Sci 26:1341–1417

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Emilie Perrin (BIA) for her help with the TEM. Financial support from the CNRS was provided through a PEPS grant (BioMIMCellwalL). BD would like to dedicate this article to the memory of the late Dr Roger H. Newman.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Duchemin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 891 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lourdin, D., Peixinho, J., Bréard, J. et al. Concentration driven cocrystallisation and percolation in all-cellulose nanocomposites. Cellulose 23, 529–543 (2016). https://doi.org/10.1007/s10570-015-0805-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0805-x

Keywords

Navigation