Skip to main content

Advertisement

Log in

Removal of Toluene in Air by a Non-thermal Plasma-Catalytic Reactor Using MnOx/ZSM-5

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Dielectric barrier discharge (DBD) reactor at non-thermal plasma (NTP) in combination with catalysts was used to remove toluene in air. Several manganese oxides catalysts with ZSM-5 zeolite as the carrier have been prepared for plasma-catalytic degradation of toluene. The prepared catalysts were characterized utilizing the scanning electron microscopy (SEM), transmission electron microscope (TEM), H2 temperature-programmed reduction (H2-TPR), X-ray diffraction (XRD), and N2 adsorption–desorption. And the residence time, plasma power, toluene concentration and specific input energy, which are critical operating factors in this process, were investigated. The experiment proved that the catalysts significantly improved the degradation effect of NTP, the conversion increased from 58 to 91.5% after loading MnOx/ZSM-5-300 at 750 ppm, and the improving trend became more obvious with the increase of concentration. The degradation of toluene can reach 92.4% at the optimal process parameters of residence time 5.8 s, initial concentration 1000 ppm, input power 30 W, SIE 6000 J/L. The results of the evaluation indicate that it is very effective to use MnOx/ZSM-5 catalyst combined with DBD-plasma for synergistic degradation of toluene at room temperature and a relatively low energy consumption.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhang XM, Feng FD, Li SR, Tang XJ, Huang YF, Liu Z, Yan KP (2013) Aerosol formation from styrene removal with an AC/DC streamer corona plasma system in air. Chem Eng J (Lausanne, Switzerland: 1996) 232:527–533

    CAS  Google Scholar 

  2. Liu JJ, Wang JT, Cao X, Zhang RX, Hou HQ (2015) Decomposition of gaseous toluene using a continuous flow discharge plasma reactor with new configurations. Environ Technol 36:3084–3093

    Article  CAS  Google Scholar 

  3. Atkinson R (2000) Atmospheric chemistry of VOCs and NOx. Atmos Environ 34:2063–2101

    Article  CAS  Google Scholar 

  4. Dewulf J, Langenhove HV (1997) Analytical techniques for the determination and measurement data of 7 chlorinated C1- and C2-hydrocarbons and 6 monocyclic aromatic hydrocarbons in remote air masses: An overview. Atmos Environ 31:3291–3307

    Article  CAS  Google Scholar 

  5. Cui W, Li JY, Chen LC, Dong XA, Wang H, Sheng JP, Sun YJ, Zhou Y, Dong F (2020) Nature-inspired CaCO3 loading TiO2 composites for efficient and durable photocatalytic mineralization of gaseous toluene. Sci Bull 65:1626–1634

    Article  CAS  Google Scholar 

  6. Yang SL, Yang HC, Yang JY, Qi HL, Kong J, Bo Z, Li XD, Yan JH, Cen KF, Tu X (2020) Three-dimensional hollow urchin α-MnO2 for enhanced catalytic activity towards toluene decomposition in post-plasma catalysis. Chem Eng J 402:126154

    Article  CAS  Google Scholar 

  7. Najafpoor AA, Jafari AJ, Hosseinzadeh A, Jazani RK, Bargozin H (2018) Optimization of non-thermal plasma efficiency in the simultaneous elimination of benzene, toluene, ethyl-benzene, and xylene from polluted airstreams using response surface methodology. Environ Sci Pollut R 25:233–241

    Article  CAS  Google Scholar 

  8. Hassan AA, Sorial GA (2010) Removal of benzene under acidic conditions in a controlled Trickle Bed Air Biofilter. J Hazard Mater 184:345–349

    Article  CAS  Google Scholar 

  9. Khan FI, Ghoshal AK (2000) Removal of volatile organic compounds from polluted air. J Loss Prev Process Ind 13:527–545

    Article  Google Scholar 

  10. Xiao G, Xu WP, Wu RB, Ni MJ, Du CM, Gao X, Luo ZY, Cen KF (2014) Non-thermal plasmas for VOCs abatement. Plasma Chem Plasma Process 34:1033–1065

    Article  CAS  Google Scholar 

  11. Harling AM, Demidyuk V, Fischer SJ, Whitehead JC (2008) Plasma-catalysis destruction of aromatics for environmental clean-up: effect of temperature and configuration. Appl Catal B 82:180–189

    Article  CAS  Google Scholar 

  12. Chen HL, Lee HM, Chen SH, Chang MB, YuLi SJSN (2009) Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems: a review of the performance enhancement mechanisms, current status, and suitable applications. Environ Sci Technol 43:2216–2227

    Article  CAS  Google Scholar 

  13. Kim HH, Oh SM, Ogata A, Futamura S (2005) Decomposition of gas-phase benzene using plasma-driven catalyst (PDC) reactor packed with Ag/TiO2 catalyst. Appl Catal B 56:213–220

    Article  CAS  Google Scholar 

  14. Roland U, Holzer F, Kopinke FD (2002) Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds: Part 2. Ozone decomposition and deactivation of γ-Al2O3. Appl Catal B 58:217–226

    Article  CAS  Google Scholar 

  15. Huang HB, Ye DQ, Leung DYC (2011) Plasma-driven catalysis process for toluene abatement: effect of water vapor. IEEE T Plasma Sci 39:576–580

    Article  CAS  Google Scholar 

  16. Saleem F, Zhang K, Harvey A (2018) Role of CO2 in the conversion of toluene as a tar surrogate in a nonthermal plasma dielectric barrier discharge reactor. Energy Fuel 32:5164–5170

    Article  CAS  Google Scholar 

  17. Yan KP, Heesch EJMV, Pemen AJM, Huijbrechts PAHJ (2002) A high-voltage pulse generator for corona plasma generation. Ieee T Ind Appl 38:866–872

    Article  CAS  Google Scholar 

  18. Cuo ZX, Deng YZ, Li WH, Peng SP, Zhao F, Liu HD, Chen YF (2018) Monolithic Mn/Ce-based catalyst of fibrous ceramic membrane for complete oxidation of benzene. Appl Surf Sci 456:594–601

    Article  CAS  Google Scholar 

  19. Yang XQ, Yu XL, Jing MZ, Song WY, Liu J, Ge MF (2018) Defective MnxZr1-xO2 Solid Solution for the Catalytic Oxidation of Toluene: Insights into the Oxygen Vacancy Contribution. ACS Appl Mater Inter 11:730–739

    Article  CAS  Google Scholar 

  20. Li JY, Chen RM, Cui W, Dong XA, Wang H, Kim K, Chu YH, Sheng JP, Sun YJ, Dong F (2020) Synergistic Photocatalytic Decomposition of a Volatile Organic Compound Mixture: High Efficiency, Reaction Mechanism, and Long-Term Stability. ACS Catal 10:7230–7239

    Article  CAS  Google Scholar 

  21. Jiang N, Zhao YH, Qiu C, Shang KF, Lu N, Li J, Wu Y, Zhang Y (2019) Enhanced catalytic performance of CoO-CeO2 for synergetic degradation of toluene in multistage sliding plasma system through response surface methodology (RSM). Appl Catal B 259:118061

    Article  CAS  Google Scholar 

  22. Einaga H, Ogata A (2009) Benzene oxidation with ozone over supported manganese oxide catalysts: Effect of catalyst support and reaction conditions. J Hazard Mater 164:1236–1241

    Article  CAS  Google Scholar 

  23. Huang HB, Ye XG, Huang WJ, Chen JD, Xu Y, Wu MY, Shao QM, Peng ZR, Ou GC, Shi JX, Feng X, Feng QY, Huang HL, Hu P, Leung DYC (2015) Ozone-catalytic oxidation of gaseous benzene over MnO2/ZSM-5 at ambient temperature: Catalytic deactivation and its suppression. Chem Eng J 264:24–31

    Article  CAS  Google Scholar 

  24. Sing KSW (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  25. Zhu FS, Li XD, Zhang H, Wu AJ, Yan JH, Ni MJ, Zhang HW, Buekens A (2016) Destruction of toluene by rotating gliding arc discharge. Fuel 176:78–85

    Article  CAS  Google Scholar 

  26. Chun YN, Kim SC, Yoshikawa K (2013) Decomposition of benzene as a surrogate tar in a gliding Arc plasma. Environ Prog Sustain 32:837–845

    Article  CAS  Google Scholar 

  27. Saleem F, Zhang K, Harvey AP (2018) Removal of toluene as a tar analogue in a N2 carrier gas using a non-thermal plasma dielectric barrier discharge (DBD) reactor. Energy Fuel. https://doi.org/10.1021/acs.energyfuels.8b03618

    Article  Google Scholar 

  28. Bo Z, Yan JH, Li XD, Chi Y, Cen KF (2008) Scale-up analysis and development of gliding arc discharge facility for volatile organic compounds decomposition. J Hazard Mater 155:494–501

    Article  CAS  Google Scholar 

  29. Xu XX, Wu JL, Xu WC, He ML, Fu ML, Chen LM, Zhu AM, Ye DQ (2017) High-efficiency non-thermal plasma-catalysis of cobalt incorporated mesoporous MCM-41 for toluene removal. Catal Today 281:527–533

    Article  CAS  Google Scholar 

  30. Petitpas G, Rollier JD, Darmon A, Gonzalez-Aguilar J, Metkemeijer R, Fulcheri L (2007) A comparative study of non-thermal plasma assisted reforming technologies. Int J Hydrogen Energ 32:2848–2867

    Article  CAS  Google Scholar 

  31. Tu X, Verheyde B, Corthals S, Paulussen S, Sels BF (2011) Effect of packing solid material on characteristics of helium dielectric barrier discharge at atmospheric pressure. Phys Plasmas 18:080702

    Article  CAS  Google Scholar 

  32. Liang WJ, Ma L, And LH, Li J (2013) Toluene degradation by non-thermal plasma combined with a ferroelectric catalyst. Chemosphere 92:1390–1395

    Article  CAS  Google Scholar 

  33. Zhang S, Liang JY, Yu XY, Xu T, Shen XJ (2019) Post-plasma-catalytic degradation of toluene using atmosphere double dielectric barrier discharge combined MnOx-based catalysts. J Disper Sci Technol. https://doi.org/10.1080/01932691.2019.1700802

    Article  Google Scholar 

  34. Rostami R, Moussavi G, Jafari AJ, Darbari S (2020) A modeling concept on removal of VOCs in wire-tube non-thermal plasma, considering electrical and structural factors. Environ Monit Assess 192:280

    Article  CAS  Google Scholar 

  35. Qin CH, Dang XQ, Huang JY, Teng JJ, Huang XM (2016) Plasma-catalytic oxidation of adsorbed toluene on Ag–Mn/γ-Al2O3: Comparison of gas flow-through and gas circulation treatment. Chem Eng J 299:85–92

    Article  CAS  Google Scholar 

  36. Radhakrishnan R, Oyama ST, Chen JG, Asakura K (2001) Electron Transfer Effects in Ozone Decomposition on Supported Manganese Oxide. J Phys Chem B 105:4245–4253

    Article  CAS  Google Scholar 

  37. Huang HB, Huang WJ, Xu Y, Ye XG, Wu MY, Shao QM, Ou GC, Peng ZR, Shi JX, Chen JD, Feng QY, Zan YJ, Huang HL, Hu P (2015) Catalytic oxidation of gaseous benzene with ozone over zeolite-supported metal oxide nanoparticles at room temperature. Catal Today. https://doi.org/10.1016/j.cattod.2015.01.006

    Article  Google Scholar 

  38. Einaga H, Teraoka Y, Ogata A (2013) Catalytic oxidation of benzene by ozone over manganese oxides supported on USY zeolite. J Catal 305:227–237

    Article  CAS  Google Scholar 

  39. Li J, Na HB, Zeng XL, Zhu TL, Liu ZM (2014) In situ DRIFTS investigation for the oxidation of toluene by ozone over Mn/HZSM-5, Ag/HZSM-5 and Mn-Ag/HZSM-5 catalysts. Appl Surf Sci 311:690–696

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support by the Sichuan Science and Technology Program (No. 2020YFS0305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiabin Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Zhou, J., Liu, W. et al. Removal of Toluene in Air by a Non-thermal Plasma-Catalytic Reactor Using MnOx/ZSM-5. Catal Lett 152, 239–253 (2022). https://doi.org/10.1007/s10562-021-03629-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03629-1

Keywords

Navigation